• Title/Summary/Keyword: Derivative analysis

Search Result 830, Processing Time 0.026 seconds

Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria

  • Se Rin Choi;Hyunji Lee;Digar Singh;Donghyun Cho;Jin-Oh Chung;Jong-Hwa Roh;Wan-Gi Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1317-1328
    • /
    • 2023
  • Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.

Patient-controlled sedation using remimazolam during third molar extraction: a case report

  • Kyung Nam Park;Myong-Hwan Karm;Kwang-Suk Seo;Hyun Jeong Kim;Seung-Hwa Ryoo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.1
    • /
    • pp.75-80
    • /
    • 2024
  • Dental sedation plays a pivotal role in alleviating patient anxiety during various procedures. Remimazolam, a benzodiazepine derivative, stands out for its distinctive attributes, particularly its rapid onset of sedation coupled with a brief duration, making it an invaluable option for dental applications. The patient was admitted for the extraction of impacted third molars via patient-controlled sedation and not only demonstrated stable vital signs but also expressed a high level of satisfaction with the procedure. An in-depth analysis of plasma remimazolam concentrations and changes in the Patient State Index revealed negative correlation patterns, highlighting the inherent potential of remimazolam in achieving effective sedation. This expanded research scope aims to provide a more nuanced understanding of the pharmacological responses to remimazolam in dental sedation scenarios. This case report offers valuable insights into the evolving landscape of dental sedation methodologies and paves the way for a more informed and evidence-based approach to the use of remimazolam in patient-controlled sedation.

Acceleration-based fuzzy sliding mode control for high-rise structures with hybrid mass damper

  • Zhenfeng Lai;Yanhui Liu;Dongfan Ye;Ping Tan;Fulin Zhou
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.431-447
    • /
    • 2024
  • The Hybrid Mass Damper (HMD) has proven effective in mitigating vibrations in high-rise structures subject to seismic and wind-induced excitations. One derivative configuration of the HMD mounts an Active Mass Damper (AMD) atop a Tuned Mass Damper (TMD). However, the control efficacy of such HMDs may be compromised when confronted with loads that exceed their design parameters. Additionally, the confined structural space within high-rise structures often limits the feasibility and economic viability of retrofitting HMD systems. This study introduces an Acceleration-based Fuzzy Power Approach Rate Sliding Mode Control (AFP-SMC) algorithm aimed at enhancing the control efficacy of HMDs while minimizing their stroke and force output requirements. Employing the Canton Tower as a research prototype, an analytical model incorporating HMDs was established, and a comparative analysis between the AFP-SMC and Linear Quadratic Gaussian (LQG) control algorithms was conducted for efficacy. The control performance of the AFP-SMC control algorithm under different control parameter variations was investigated. Furthermore, by experimentally assessing the AMD subsystem within the Canton Tower, friction and ripple force formulas were derived to bolster the analytical model, thereby validating the robustness of the AFP-SMC algorithm. The results show that the proposed AFP-SMC algorithm effectively reduces the vibration response of the structure and the stroke and control force output of HMDs, and exhibits superior overall control performance and robustness compared to the LQG algorithm.

An Analysis of the Gyungokgo's Ingredients and a Comparison Study on Anti-oxidation Effects According to the Kinds of Extract (경옥고(瓊玉膏)의 성분 분석 및 추출물별 항산화(抗酸化) 효능 비교)

  • Lee, So-Yeon;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Park, Chi-Sang
    • The Korea Journal of Herbology
    • /
    • v.23 no.2
    • /
    • pp.123-136
    • /
    • 2008
  • Objectives : To estimate the value of the Gyungokgo as therapeutic agent preventing against aging with an analysis of the ingredients and the bio-activating effects by enzymologic methods. Methods : A quantitative analysis of general ingredients' of the Gyungokgo's extract was done first. The effects on electronic donating ability, SOD-like activity, nitric oxide inhibition, xanthine oxidase inhibition, whitening effect have been investigated in the physiological activity measurement of function experiment. Results : The contained hydrolyzed amino acid is Valine, Aspartic acid, Arginine, Isoleucine and the contained free amino acid is Arginine, Phenylalanine, Valine, Glycine. The derivative of free amino acid is Phosphoserine, Carnocine, ${\gammer}$-Aminoisobutyric acid. And the Gyungokgo contains 14 species of minerals, K>Na>Ca>Mg>Fe>Al>Mn. Then, to assure of the Gyungokgo's anti-oxidation, these following subjects -polyphenol, electronic donating ability, SOD-like activity, nitric oxide inhibition, xanthine oxidase inhibition, tyrosinase inhibation- are analyzed and show high activity especially the most in chloroform extracts, (every ingredients written by the order of high amount) Conclusions : The Gyungokgo contains many materials functioning as anti-oxidation, neurotransmitter, anti-fatigue and immune agent.

  • PDF

Partial Least Squares Analysis on Near-Infrared Absorbance Spectra by Air-dried Specific Gravity of Major Domestic Softwood Species

  • Yang, Sang-Yun;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Cho, Kyu-Chae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Research on the rapid and accurate prediction of physical properties of wood using near-infrared (NIR) spectroscopy has attracted recent attention. In this study, partial least squares analysis was performed between NIR spectra and air-dried specific gravity of five domestic conifer species including larch (Larix kaempferi), Korean pine (Pinus koraiensis), red pine (Pinus densiflora), cedar (Cryptomeria japonica), and cypress (Chamaecyparis obtusa). Fifty different lumbers per species were purchased from the five National Forestry Cooperative Federations of Korea. The air-dried specific gravity of 100 knot- and defect-free specimens of each species was determined by NIR spectroscopy in the range of 680-2500 nm. Spectral data preprocessing including standard normal variate, detrend and forward first derivative (gap size = 8, smoothing = 8) were applied to all the NIR spectra of the specimens. Partial least squares analysis including cross-validation (five groups) was performed with the air-dried specific gravity and NIR spectra. When the performance of the regression model was expressed as $R^2$ (coefficient of determination) and root mean square error of calibration (RMSEC), $R^2$ and RMSEC were 0.63 and 0.027 for larch, 0.68 and 0.033 for Korean pine, 0.62 and 0.033 for red pine, 0.76 and 0.022 for cedar, and 0.79 and 0.027 for cypress, respectively. For the calibration model, which contained all species in this study, the $R^2$ was 0.75 and the RMSEC was 0.37.

Shape optimal design of a 2-D heat transfer system with the isoparametric finite element (等係數 유한요소를 사용한 2차원 열전달시스템의 형상 최적설계)

  • 유영면;박찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.82-87
    • /
    • 1987
  • In this study a method of shape optimization is applied to two dimensional heat transfer system. For this the optimization problem is defined in a functional form including cost, constraints and the system governing equation. Then the material derivative concept in continuum mechanics and the adjoint variable method are employed for the shape design sensitivity analysis. With the sensitivity analysis results, an optimum is sought with the gradient projection optimization algorithm. The two dimensional isoparametric finite elements are used for accurate analysis and sensitivity calculations. The above method is employed to find the boundary shape to achieve a desired temperature distribution along a segment of the boundary subject to the maximum area constraint.

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry (열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Chun, Sang-Jin;Choi, Don-Ha;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

Rapid Near Infrared Transmittance Analysis of Ingredients on the Casing Materials (근적외선 투과 분광분석법을 이용한 가향액 중 가향제 분석)

  • Han, Jung-Ho;Jung, Han-Joo;Yang, Burm-Ho;Rhee, Moon-Soo;Kim, Yong-Ok
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • It is very important to add uniformly casing materials on tobacco for taste and flavor. However, analysis of casing materials was spent much time, effort and money. The object of this study was the development of a rapid method for the determination of glycerine, propylene glycol(PG), sucrose, glucose, fructose and water in the casing materials using the NIR transmittance method. Hundreds of calibration samples, with extended ranges (50%, 75%, 100%, 125%, and 150% of standard addition) in each constituent, were prepared in the casing materials at the various temperatures $(25^{\circ}C\;and\;30^{\circ}C)$. Calibration equation was developed by modified partial least square (MPLS) method using second derivative. The standard error of calibration and $R^2$ between added value and NIR estimated value results were $0.007{\sim}0.034\;and\;0.996{\sim}1.000$ for the casing sample set, respectively. The standard error of prediction and R2 between added value and NIR estimated value results were $0.010{\sim}0.034\;and\;0.997{\sim}1.000$ for the casing sample set, respectively. The analysis result was not different significantly between the NIR and added value. These results show that the NIR measurement system is an effective tool to ensure quality on the casing materials.

CO OBSERVATIONS AND STABILITY ANALYSIS OF B133 AND B134

  • Hong, S.S.;Kim, H.G.;Park, S.H.;Park, Y.S.;Imaoka, K.
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.71-94
    • /
    • 1991
  • With the 14 m radio telescope at DRAO and the 4 m at Nagoya University, we have made detailed maps of $^{12}CO$ and $^{13}CO$ emissions from two Barnard objects B133 and B134 in the $J=1{\rightarrow}O$ rotational transition lines. Usual LTE analyses of the CO observations led us to determine the distribution of column densities over an entire area encompassing both globules. Total gas masses estimated from the column density map are $90\;M_{\odot}$ and $20\;M_{\odot}$ for B133 and B134, respectively. The radial velocity of B133 is red shifted with respect to B134 by $0.8\;km\;s^{-1}$, which is too lagre to bind the two clouds as a binary system. We have shown that the usual stability analysis based on the simplified version of virial theorem with the second time-derivative of the moment of inertia term $\ddot{I}$ being ignored could mislead us in determining whether a given cloud eventually collapses or not. The lull version of the scalar virial theorem with the $\ddot{I}$ term is shown to be useful in following up the time-dependent variations of the cloud size R and its streaming velocity $\dot{R}$ as functions of time. Results of our stability analysis suggest that B133 will eventually collapse in $(2{\sim}4){\times}10^6$ years.

  • PDF

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.