• 제목/요약/키워드: Depth-of focus

Search Result 820, Processing Time 0.024 seconds

On the Study of Initializing Extended Depth of Focus Algorithm Parameters (Extended Depth of Focus 알고리듬 파라메타 초기설정에 관한 연구)

  • Yoo, Kyung-Moo;Joo, Hyo-Nam;Kim, Joon-Seek;Park, Duck-Chun;Choi, In-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.625-633
    • /
    • 2012
  • Extended Depth of Focus (EDF) algorithms for extracting three-dimensional (3D) information from a set of optical image slices are studied by many researches recently. Due to the limited depth of focus of the microscope, only a small portion of the image slices are in focus. Most of the EDF algorithms try to find the in-focus area to generate a single focused image and a 3D depth image. Inherent to most image processing algorithms, the EDF algorithms need parameters to be properly initialized to perform successfully. In this paper, we select three popular transform-based EDF algorithms which are each based on pyramid, wavelet transform, and complex wavelet transform, and study the performance of the algorithms according to the initialization of its parameters. The parameters we considered consist of the number of levels used in the transform, the selection of the lowest level image, the window size used in high frequency filter, the noise reduction method, etc. Through extended simulation, we find a good relationship between the initialization of the parameters and the properties of both the texture and 3D ground truth images. Typically, we find that a proper initialization of the parameters improve the algorithm performance 3dB ~ 19dB over a default initialization in recovering the 3D information.

A Measurement Method of Three-Dimensional Surface Morphology Based on Depth-from-Focus through Linear Magnification Calibration (선형배율보정을 통한 DFF 기반의 삼차원 형상 측정법)

  • Kim, Gyung-Bum;Shin, Young-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.115-122
    • /
    • 2005
  • Errors resulting from magnification variations of a optical system are largely generated in three-dimensional shape measurements based on depth-from-focus. In the case of measuring the surface morphology of tiny objects based on DFF, images are acquired with a very small interval so that magnification changes can be minimized. However, the magnification variations are actually existed in the acquired images and so focus measures are wrongly or ambiguously extracted. In this paper, a methodology with linear magnification calibrations, based on DFF, is proposed to make more accurate measurement in surface morphology with high depth discontinuity, compared with previous ones. Several experiments show that the proposed method outperforms existing ones without magnification calibrations.

Foreground Extraction and Depth Map Creation Method based on Analyzing Focus/Defocus for 2D/3D Video Conversion (2D/3D 동영상 변환을 위한 초점/비초점 분석 기반의 전경 영역 추출과 깊이 정보 생성 기법)

  • Han, Hyun-Ho;Chung, Gye-Dong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.243-248
    • /
    • 2013
  • In this paper, depth of foreground is analysed by focus and color analysis grouping for 2D/3D video conversion and depth of foreground progressing method is preposed by using focus and motion information. Candidate foreground image is generated by estimated movement of image focus information for extracting foreground from 2D video. Area of foreground is extracted by filling progress using color analysis on hole area of inner object existing candidate foreground image. Depth information is generated by analysing value of focus existing on actual frame for allocating depth at generated foreground area. Depth information is allocated by weighting motion information. Results of previous proposed algorithm is compared with proposed method from this paper for evaluating the quality of generated depth information.

Boundary Depth Estimation Using Hough Transform and Focus Measure (허프 변환과 초점정보를 이용한 경계면 깊이 추정)

  • Kwon, Dae-Sun;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.78-84
    • /
    • 2015
  • Depth estimation is often required for robot vision, 3D modeling, and motion control. Previous method is based on the focus measures which are calculated for a series of image by a single camera at different distance between and object. This method, however, has disadvantage of taking a long time for calculating the focus measure since the mask operation is performed for every pixel in the image. In this paper, we estimates the depth by using the focus measure of the boundary pixels located between the objects in order to minimize the depth estimate time. To detect the boundary of an object consisting of a straight line and a circle, we use the Hough transform and estimate the depth by using the focus measure. We performed various experiments for PCB images and obtained more effective depth estimation results than previous ones.

All in focus Camera vision system for Mobile Phone based on the Micro Diffractive Fresnel lens systems (곡률 변경 소자를 이용한 All In Focus)

  • Chi, Yong-Seok;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2007
  • A method to focus the object in camera system by applying the Hill climb algorithm from optical lens moving device (VCM; Voice coil motor) is proposed. The focusing algorithm from VCM is focus on the object but in these criteria is a well-known drawback; the focus is good only at same distance objects but the focus is bad (blur image) at different distance objects because of the DOF (Depth of focus) or DOF (Depth of field) at the optical characteristic. Here, the new camera system that describes the Reflector of free curvature systems (or Diffractive Fresnel lens) and the partition of focusing window area is proposed. The method to improve the focus in all areas (different distance objects) is proposed by new optical system (discrete auto in-focus) using the Reflector of free curvature systems (or Diffractive Fresnel lens) and by applying the partition of all areas. The proposal is able to obtain good focus in all areas.

  • PDF

A study on the focus measure for image blending based EDoF (Extended Depth of Field) (영상 합성 기반 피사계심도 확장을 위한 초점 정량화 연구)

  • Cha, Su-Ram;Shin, Nam-Ju;Kim, Jeong-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.435-437
    • /
    • 2010
  • 렌즈의 피사계심도 (Depth of Field)가 낮은 카메라로 영상을 획득 했을 때, 한 영상 내에도 in-focus 영역과 out of-focus 영역이 동시에 존재하게 된다. 따라서 영상을 복원하기 위해 in-focus 영역과 out-of-focus 영역을 구분하는 focus measure가 필요하게 된다. 기존 focus measure 알고리즘은 획득된 영상의 intensity 값의 절대적인 변화나 고주파수 성분 값에 따라 in-focus와 out-of-focus를 결정하기 때문에 out-of-focus 영역이 smooth 하지 않을 경우에는 in-focus 영역이라 잘못 판단할 수 있을 뿐만 아니라 잡음에 민감한 단점을 가진다. 본 논문에서는 기존 알고리즘의 한계점을 보완하는 연구 방향을 제시한다.

  • PDF

A Measurement Method of Surface Morphology Based on Depth-from-Focus with Magnification Variations of Optical System (광학계의 배율 변화를 고려한 DFF 기반의 형상 측정법)

  • 신영수;김경범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1500-1503
    • /
    • 2004
  • Errors resulting from magnification variations of optical system are largely generated in three-dimensional shape measurements. In the case of measuring the surface morphology of tiny objects based on DFF, images are acquired with a very small interval and then magnification changes are minimized. However, the magnification variations are actually existed in optical system and so focus measures in DFF are wrongly or ambiguously extracted. in this paper, a methodology based on DFF with the magnification changes is proposed to make more accurate measurement in surface morphology with high depth discontinuity, compared with previous ones. Several experiments show that the proposed method outperforms existing ones without magnification changes.

  • PDF

High power $CO_2$ laser beam welding for low carbon steels (저탄소강의 고출력 $CO_2$ 레이저 빔 용접)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.12-21
    • /
    • 1989
  • Laser beam welding parameters have experimentally investigated, using a continuous wave 3kW $CO_2$ laser with the various travel speeds, beam mode and laser beam power in low carbon steels. An optimum position of focus and the effect of shielding gas on penetration depth with varying the flow range of 0.5 to 5.1m/min have been combined to investigate the effect of laser power and travel speed on penetration depth and bead width. It is found that the optimum position of focus in 3kW class laser is 0.5 to 1.5mm below the surface of the material. The flow rate of shielding gas affects the penetration depth and He is more effective than Ar. The penetration depth in laser welds of low carbon steels is between two and four times of the bead width. Laser beam welding of butt joints in 2mm thick carbon steel has been carried out to establish a weldability lobe. The lobe indicating acceptable welding conditions is introduced.

  • PDF

3D Shape Recovery Using Image Focus through Nonlinear Total Variation (비선형 전변동을 이용한 초점거리 변화 기반의 3 차원 깊이 측정 방법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Shape From Focus (SFF) is a passive optical technique to recover 3D structure of an object that utilizes focus information from 2D images of the object taken at different focus levels. Mostly, SFF methods use a single focus measure to compute image focus quality of each pixel in the image sequence. However, it is difficult to recover accurate 3D shape using a single focus measure, as different focus measures perform differently in diverse conditions. In this paper, a nonlinear Total Variation (TV) based approach is proposed for 3D shape recovery. To improve the result of surface reconstruction, several initial depth maps are obtained using different focus measures and the resultant 3D shape is obtained by diffusing them through TV. The proposed method is tested and evaluated by using image sequences of synthetic and real objects. The results and comparative analysis demonstrate the effectiveness of our method.

A study on the EDOF(Extended depth of field) camera module performance optimization (EDOF 카메라 모듈의 성능 최적화에 대한 연구)

  • Choi, Kyung-Hoon;Kim, Young-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.313-315
    • /
    • 2011
  • Smart phone camera module are mounted on the focus are 2 types depending on the behavior. AF (Auto focus) camera module and the FF (Fixed focus) camera module two are different types. AF camera module to move the location of the lens and is a way to automatically focus, FF camera module lens position of the focus is the way to a fixed state. EDOF camera module the location of the lens as a frozen state EDOF AF module using the algorithm to focus on applied technology is a module. In this paper, optimization EDOF camera module implementation of the resolution.

  • PDF