• Title/Summary/Keyword: Depth video

Search Result 450, Processing Time 0.027 seconds

An Efficient Object Extraction Scheme for Low Depth-of-Field Images (낮은 피사계 심도 영상에서 관심 물체의 효율적인 추출 방법)

  • Park Jung-Woo;Lee Jae-Ho;Kim Chang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.9
    • /
    • pp.1139-1149
    • /
    • 2006
  • This paper describes a novel and efficient algorithm, which extracts focused objects from still images with low depth-of-field (DOF). The algorithm unfolds into four modules. In the first module, a HOS map, in which the spatial distribution of the high-frequency components is represented, is obtained from an input low DOF image [1]. The second module finds OOI candidate by using characteristics of the HOS. Since it is possible to contain some holes in the region, the third module detects and fills them. In order to obtain an OOI, the last module gets rid of background pixels in the OOI candidate. The experimental results show that the proposed method is highly useful in various applications, such as image indexing for content-based retrieval from huge amounts of image database, image analysis for digital cameras, and video analysis for virtual reality, immersive video system, photo-realistic video scene generation and video indexing system.

  • PDF

Intra Prediction Method by Quadric Surface Modeling for Depth Video (깊이 영상의 이차 곡면 모델링을 통한 화면 내 예측 방법)

  • Lee, Dong-seok;Kwon, Soon-kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, we propose an intra-picture prediction method by a quadratic surface modeling method for depth video coding. The pixels of depth video are transformed to 3D coordinates using distance information. A quadratic surface with the smallest error is found by least square method for reference pixels. The reference pixel can be either the upper pixels or the left pixels. In the intra prediction using the quadratic surface, two predcition values are computed for one pixel. Two errors are computed as the square sums of differences between each prediction values and the pixel values of the reference pixels. The pixel sof the block are predicted by the reference pixels and prediction method that they have the lowest error. Comparing with the-state-of-art video coding method, simulation results show that the distortion and the bit rate are improved by up to 5.16% and 5.12%, respectively.

High-qualtiy 3-D Video Generation using Scale Space (계위 공간을 이용한 고품질 3차원 비디오 생성 방법 -다단계 계위공간 개념을 이용해 깊이맵의 경계영역을 정제하는 고화질 복합형 카메라 시스템과 고품질 3차원 스캐너를 결합하여 고품질 깊이맵을 생성하는 방법-)

  • Lee, Eun-Kyung;Jung, Young-Ki;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.620-624
    • /
    • 2009
  • In this paper, we present a new camera system combining a high-quality 3-D scanner and hybrid camera system to generate a multiview video-plus-depth. In order to get the 3-D video using the hybrid camera system and 3-D scanner, we first obtain depth information for background region from the 3-D scanner. Then, we get the depth map for foreground area from the hybrid camera system. Initial depths of each view image are estimated by performing 3-D warping with the depth information. Thereafter, multiview depth estimation using the initial depths is carried out to get each view initial disparity map. We correct the initial disparity map using a belief propagation algorithm so that we can generate the high-quality multiview disparity map. Finally, we refine depths of the foreground boundary using extracted edge information. Experimental results show that the proposed depth maps generation method produces a 3-D video with more accurate multiview depths and supports more natural 3-D views than the previous works.

  • PDF

Fast Extraction of Objects of Interest from Images with Low Depth of Field

  • Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.

  • PDF

Depth Video Post-processing for Immersive Teleconference (원격 영상회의 시스템을 위한 깊이 영상 후처리 기술)

  • Lee, Sang-Beom;Yang, Seung-Jun;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.497-502
    • /
    • 2012
  • In this paper, we present an immersive videoconferencing system that enables gaze correction between users in the internet protocol TV (IPTV) environment. The proposed system synthesizes the gaze corrected images using the depth estimation and the virtual view synthesis algorithms as one of the most important techniques of 3D video system. The conventional processes, however, causes several problems, especially temporal inconsistency of a depth video. This problem leads to flickering artifacts discomforting viewers. Therefore, in order to reduce the temporal inconsistency problem, we exploit the joint bilateral filter which is extended to the temporal domain. In addition, we apply an outlier reduction operation in the temporal domain. From experimental results, we have verified that the proposed system is sufficient to generate the natural gaze-corrected image and realize immersive videoconferencing.

Foreground Extraction and Depth Map Creation Method based on Analyzing Focus/Defocus for 2D/3D Video Conversion (2D/3D 동영상 변환을 위한 초점/비초점 분석 기반의 전경 영역 추출과 깊이 정보 생성 기법)

  • Han, Hyun-Ho;Chung, Gye-Dong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.243-248
    • /
    • 2013
  • In this paper, depth of foreground is analysed by focus and color analysis grouping for 2D/3D video conversion and depth of foreground progressing method is preposed by using focus and motion information. Candidate foreground image is generated by estimated movement of image focus information for extracting foreground from 2D video. Area of foreground is extracted by filling progress using color analysis on hole area of inner object existing candidate foreground image. Depth information is generated by analysing value of focus existing on actual frame for allocating depth at generated foreground area. Depth information is allocated by weighting motion information. Results of previous proposed algorithm is compared with proposed method from this paper for evaluating the quality of generated depth information.

A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM (차세대 비디오 코덱(JEM)의 고속 QTBT 분할 깊이 결정 기법)

  • Yoon, Yong-Uk;Park, Do-Hyun;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.541-547
    • /
    • 2017
  • The Joint Exploration Model (JEM), which is a reference SW codec of the Joint Video Exploration Team (JVET) exploring the future video standard technology, provides a recursive Quadtree plus Binary Tree (QTBT) block structure. QTBT can achieve enhanced coding efficiency by adding new block structures at the expense of largely increased computational complexity. In this paper, we propose a fast decision algorithm of QTBT block partitioning depth that uses the rate-distortion (RD) cost of the upper and current depth to reduce the complexity of the JEM encoder. Experimental results showed that the computational complexity of JEM 5.0 can be reduced up to 21.6% and 11.0% with BD-rate increase of 0.7% and 1.2% in AI (All Intra) and RA (Random Access), respectively.

Boundary Artifacts Reduction in View Synthesis of 3D Video System (3차원 비디오의 합성영상 경계 잡음 제거)

  • Lee, Dohoon;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • This paper proposes an efficient method to remove the boundary artifacts of rendered views caused by damaged depth maps in the 3D video system. First, characteristics of boundary artifacts with the compression noise in depth maps are carefully studied. Then, the artifacts suppression method is proposed by the iterative projection onto convex sets (POCS) algorithm with setting the convex set in pixel and frequency domain. The proposed method is applied to both texture and depth maps separately during view rendering. The simulation results show the boundary artifacts are greatly reduced with improving the quality of synthesized views.

Depth-adaptive Sharpness Adjustments for Stereoscopic Perception Improvement and Hardware Implementation

  • Kim, Hak Gu;Kang, Jin Ku;Song, Byung Cheol
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.3
    • /
    • pp.110-117
    • /
    • 2014
  • This paper reports a depth-adaptive sharpness adjustment algorithm for stereoscopic perception improvement, and presents its field-programmable gate array (FPGA) implementation results. The first step of the proposed algorithm was to estimate the depth information of an input stereo video on a block basis. Second, the objects in the input video were segmented according to their depths. Third, the sharpness of the foreground objects was enhanced and that of the background was maintained or weakened. This paper proposes a new sharpness enhancement algorithm to suppress visually annoying artifacts, such as jagging and halos. The simulation results show that the proposed algorithm can improve stereoscopic perception without intentional depth adjustments. In addition, the hardware architecture of the proposed algorithm was designed and implemented on a general-purpose FPGA board. Real-time processing for full high-definition stereo videos was accomplished using 30,278 look-up tables, 24,553 registers, and 1,794,297 bits of memory at an operating frequency of 200MHz.

Depth Estimation and Intermediate View Synthesis for Three-dimensional Video Generation (3차원 영상 생성을 위한 깊이맵 추정 및 중간시점 영상합성 방법)

  • Lee, Sang-Beom;Lee, Cheon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1070-1075
    • /
    • 2009
  • In this paper, we propose new depth estimation and intermediate view synthesis algorithms for three-dimensional video generation. In order to improve temporal consistency of the depth map sequence, we add a temporal weighting function to the conventional matching function when we compute the matching cost for estimating the depth information. In addition, we propose a boundary noise removal method in the view synthesis operation. after finding boundary noise areas using the depth map, we replace them with corresponding texture information from the other reference image. Experimental results showed that the proposed algorithm improved temporal consistency of the depth sequence and reduced flickering artifacts in the virtual view. It also improved visual quality of the synthesized virtual views by removing the boundary noise.