• Title/Summary/Keyword: Depth of discharge

Search Result 522, Processing Time 0.04 seconds

The Effect of Inpatient Elderly Patients' with Chronic Diseases on Fall Experience (입원 노인환자의 만성질환 보유가 낙상경험에 미치는 영향)

  • Park, Ju Hyee;Suh, Won Sik
    • Korea Journal of Hospital Management
    • /
    • v.26 no.4
    • /
    • pp.29-37
    • /
    • 2021
  • Purpose: The purpose of this study is to identify the characteristics and factors affecting falls among elderly inpatients with chronic diseases based on the data from the discharge damage depth survey of the Korea Disease Control and Prevention Agency(KDCA) from 2014 to 2018. Method: The study selected elderly inpatients aged over 65 who were hospitalized(n=1,173). Their data were analyzed after being assigned to either a fall group(KSCD, W00-W19) or a non-fall group. Frequency analysis, cross-tabulation analysis, and binary logistic regression analysis were conducted, using SPSS 28. Results: According to the analysis on category of fall and non-fall group were statistically significant difference in age and having chronic diseases. Based on the binary logistic regression analysis of factors affecting falls, The risk of falls was 1.058 times higher with age, and E11-E14 and I63 as main diagnostic codes, the risk of falls was 2.049 times and 2.437 times higher. Conclusion: It is necessary to develop customized educational manuals and muscle exercise programs considering the characteristics of chronic diseases and to create a safe hospital room environment, and this result is expected to be used as basic data for fall prevention education and manual development for elderly inpatients with chronic diseases.

Assessment of Drainage Discharge and Nitrate-Nitrogen Loads According to Subsurface Drainage Design in Corn Cultivated Agricultural Land in Illinois, USA (미국 일리노이주 옥수수 재배 농경지 내 암거배수 시설 설계에 따른 배수량 및 질산성질소 배출 평가)

  • Hwang, Soonho;Jeong, Hanseok;Bhattarai, Rabin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.15-23
    • /
    • 2024
  • Subsurface drainage improves crop productivity in poorly drained soils but may also substantially contribute impairment of surface water quality due to excess leaching losses of nutrients like Nitrate-Nitrogen (NO3-N). This research presents preliminary findings from a 3-years tile depth and spacing study in Illinois state that includes three drain spacings implemented in 2 plots. We found that the plot with the narrower subsurface drainage (Case 1) exported more drainage water compared to the plot with the narrower subsurface drainage system (Case 2). The total drainage water from Case 1 plot showed 57% more compared to Case 2 plot. Whereas we observed that the plot with narrower drain spacing (Case 1) exported only 9% more NO3-N leaching losses compared to the wider plot (Case 2). The average corn yield was observed higher in plot Case 1 compared to Case 2. Especially, we observed about 7% higher corn yield in plot Case 1 compared to Case 2 plot in the relatively dried year (2022). The preliminary findings for this study suggest that subsurface drainage systems can be optimized to reduce nutrient losses while improving the crop productivity.

Distribution and Circulation of Autumn Low-salinity Water in the East Sea (동해의 가을철 저염수 분포 및 유동)

  • Lee, Dong-Kyu;Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Seawater with salinity of 32.5 psu or less is observed in the southern Japan/East Sea (JES) every autumn. It is confined to a surface layer 30-45 m in depth that expands to cover the entire JES in October. Two sources of "autumn low-salinity water" have been identified from historical hydrographic data in the western JES: East China Sea (ECS) water mixed with fresh water discharge from the Yangtze River (Changjiang) and seawater diluted with melted sea ice in the northern JES. Low-salinity water inflow from the ECS begins in June and reaches its peak in September. Low-salinity water from the northern JES expands southward along the coast, and its horizontal distribution varies among years. A rare observational study of the entire JES in October 1969 indicated that water with salinity less than 33.0 psu covered the southwestern JES; the lowest salinity water was found near the Ulleung Basin. In October 1995, the vertical distribution of salinity observed in a meridional section revealed that water with salinity of 33.6 psu or less was present in the area north of the subpolar front.

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Study on the rainwater recharge model using the groundwater variation and numerical solution of quasi-three dimensional two-phase groundwater flow

  • Tsutsumi, Atsushi;Jinno, Kenji;Mori, Makito;Momii, Kazuro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1034-1040
    • /
    • 2002
  • A rainwater recharge model, which is combined with the quasi-three dimensional unconfined groundwater flow, is proposed in the present paper. The water budget in the catchments of the planned new campus of Kyushu University is evaluated by the present method that calculates both the surface runoff and groundwater flow simultaneously. The results obtained in the present study reveal that the calculated monthly and annual runoff discharges agree reasonably well with the observed discharge. Combining the rainwater recharge model, the two-phase groundwater flow equation is numerically solved f3r the entire area including the low land where the salt water intrusion is observed. The calculated depth of the salt-fresh interface agrees reasonably well with the observed ones at several cross sections. On the other hand, however, it is found that the calculated water budget remains uncertain because of lack of information on the accurate potential evapotranspiration including rainfall interception. In conclusion, however, it is found that the proposed method is applicable for the areas where the horizontal flow is dominant and the interface is assumed to be sharp.

  • PDF

Soil quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Installation of Monitoring System and Background Data Collection - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -모니터링 시스템의 구축과 기초자료의 수집-)

  • 최중대;김정제;정진철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.113-123
    • /
    • 1997
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and neighboring soils as the 1st year study of a 5 year project to assess soil quality and develop the management practices for environmentally sound agriculture in mountainous soils. Eleven $3{\times}15m$ runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil quality and discharge of nonpoint source pollutants. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. Concentrations of T-N, $NH_4$-N, and $NO_3$-N of surface soil sampled in the winter were relatively high. Runoff quality in the winter and thawing season in the spring was largely dependent on surface freezing, snow accumulation, temperature, surface thawing depth and so on. Runoff during the thawing season caused serious soil erosion but runoff quality during the winter was relatively good. Serious wind erosion from unprotected fields after the fall harvest were obserbed and best management practices to reduce the erosion need to be developed.

  • PDF

Annual Variation of Salinity in the Neighbouring Seas of Korea (韓國周邊 海洋鹽分의 年變化)

  • Kang, Yong Q;Jin, Myoung-Shin
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.105-110
    • /
    • 1984
  • We study the annual variation of salinity at the sea surface and at 30m depth in the neighbouring seas of korea by the harmonic method. The analysis based on the monthly salinity data at 182 stations collected regularly by the Fisheries Research and Development Agency during 15 years (1961∼1975). The annual mean salinity in the West Sea is lower than that in the East Sea. In the amplitude of annual salinity variation decreases and the phase delays with the downstream distance of the Tsushima Current. The salinity at 30m has a higher mean, a smaller amplitude and a delayed phase than the corresponding ones at the surface. The annual variations of salinity in the South and East Seas are caused mainly by the annual variations of the local precipitation and that of the fresh water discharge from the Yangtze River.

  • PDF

Maternal Transition in Mothers with High Risk Newborns (고위험 신생아 어머니의 모성전환 과정)

  • 신현정
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.2
    • /
    • pp.243-251
    • /
    • 2004
  • Purpose: The purpose of this study was a comprehensive understanding about maternal transition in mothers with high risk newborns according to the degree of situational meaning. Method: A methodological triangulation that combines qualitative and quantitative methods was used. The situational meaning of a high risk newborn mother was identified using a Family Meaning Attribution Scale. According to the degree of situational meaning, in-depth interviews were conducted at 3 time periods postpartum: between 3-10 days after childbirth, around the time of the newborn's discharge, and between 10-12 weeks after childbirth. Quantitative data was analyzed using descriptive statistics and t-test. Qualitative data was analyzed using Tutty, Rothery, & Grinnell's methodology. Result: The average score of the situational meaning in high the risk newborn mother was 53.57(possible score is between 0-96) and the average score of each item was 1.67. A Maternal transition process in the mother that has a positive situational meaning was conceptualized in three distinctive phases: confusion, accepting, and shaping phases. The Maternal transition process in the mother that has a negative situational meaning was also conceptualized in three distinctive phases: avoiding, conflicting, and accepting phases. Conclusion: It is necessary that the nurses provide high risk newborn mothers with individualized care considering both the situational meaning that is attributed to them and the maternal transition phase that they are faced with.

Long-term Paradigm Analyses of Chlorophyll a and Water Quality in Reservoir Systems

  • Bach, Quang-Dung;Shin, Yong-Sik;Song, Eun-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.432-440
    • /
    • 2009
  • During the period of past fifteen years (1992~2006), variations of chlorophyll a in relation with water quality in freshwater reservoirs were investigated. This study compared total nitrogen (TN), total phosphorus (TP), chlorophyll a, Secchi depth (SD) and total suspended solids (TSS) between terrestrial freshwater reservoir and coastal freshwater reservoir systems based on their location. Regression analyses (linear and non-linear regressions) were applied for all study sites to examine relationship and interaction of these factors in the freshwater systems from in-land to coasts. The results demonstrated that chlorophyll a was significantly correlated to total phosphorus ($R^2=0.94$, P<0.0001) and was remarkably related to TSS increase ($R^2=0.63$, P<0.0001) in the selected reservoirs. The TN : TP ratio in the reservoir systems was higher than Redfield ratio (16 : 1) indicating that the reservoirs are potentially experiencing P limitation. Water quality of coastal freshwater reservoir system was more significantly decreased than the reservoirs located in in-land during the past fifteen years. The strict management of nutrient discharge into freshwater systems should implemented in the coastal reservoirs since the freshwater is introduced into coastal estuarine systems.

Characteristics of Ball End Milling and Rotary Die-sinking Electrical Discharge Machining for the Cutting Inclination Location (가공경사면 위치에 따른 볼엔드밀가공과 회전식 형조방전가공 특성)

  • 왕덕현;김원일;박성은;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.73-80
    • /
    • 2002
  • In this study, work materials of the ree form surface shape was machined by ball end mill cutter according to the change of cutting location and depth, and the acquired data of cutting force, tool deflection and shape accuracy were analyzed. Cutting force results were obtained with tool dynamometer and tool deflection values were measured by a couple of eddy-current sensors. Shape accuracy was obtained by roundness tester and surface profile measuring machine. As inclination angle was decreased, cutting force was increased. Cutting force showed large value at $105^{\circ}$ and $150^{\circ}$. Tool deflection was less at down milling than at up milling, decreased at 45$^{\circ}$ and 120$^{\circ}$, and shown large tool deflection at $150^{\circ}$. Roughness values were found to be bad in the inside of surface shape tool deflection. Surface accuracy was obtained better precision in down milling than in up milling.