• Title/Summary/Keyword: Depth of Interaction

Search Result 829, Processing Time 0.03 seconds

Design and Simulation of Depth-Encoding PET Detector using Wavelength-Shifting (WLS) Fiber Readout

  • An, Su Jung;Kim, Hyun-il;Lee, Chae Young;Song, Han Kyeol;Park, Chan Woo;Chung, Young Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.305-310
    • /
    • 2015
  • We propose a new concept for a depth of interaction (DOI) positron emission tomography (PET) detector based on dual-ended-scintillator (DES) readout for small animal imaging. The detector consists of lutetium yttrium orthosilicate (LYSO) arrays coupled with orthogonal wavelength-shifting (WLS) fibre placed on the top and bottom of the arrays. On every other line, crystals that are 2 mm shorter are arranged to create grooves. WLS fibre is inserted into these grooves. This paper describes the design and performance evaluation of this PET detector using Monte Carlo simulations. To investigate sensitivity by crystal size, five types of PET detectors were simulated. Because the proposed detector is composed of crystals with three different lengths, degradation in sensitivity across the field of view was also explored by simulation. In addition, the effect of DOI resolution on image quality was demonstrated. The simulation results proved that the devised PET detector with excellent DOI resolution is helpful for reducing the channels of sensors/electronics and minimizing gamma ray attenuation and scattering while maintaining good detector performance.

Frequency analysis of wave run-up on vertical cylinder in transitional water depth

  • Deng, Yanfei;Yang, Jianmin;Xiao, Longfei;Shen, Yugao
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.201-213
    • /
    • 2014
  • Wave run-up is an important issue in offshore engineering, which is tightly related to the loads on the marine structures. In this study, a series of physical experiments have been performed to investigate the wave run-up around a vertical cylinder in transitional water depth. The wave run-ups of regular waves, irregular waves and focused waves have been presented and the characteristics in frequency domain have been investigated with the FFT and wavelet transform methods. This study focuses on the nonlinear features of the wave run-up and the interaction between the wave run-up and the cylinder. The results show that the nonlinear interaction between the waves and the structures might result wave run-up components of higher frequencies. The wave run-ups of the moderate irregular waves exhibit 2nd order nonlinear characteristics. For the focused waves, the incident waves are of strong nonlinearity and the wavelet coherence analysis reveals that the wave run-up at focal moment contains combined contributions from almost all the frequency components of the focused wave sequence and the contributions of frequency components up to 4th order harmonic levels are recommended to be included.

NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER (천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

An Inquiry into Typically Developing Children's Interaction Strategies with Young Children with ADHD According to Gender (ADHD 유아에 대한 일반유아의 성별 상호작용 전략 탐구)

  • Kyun, Ju-Youn;Chung, Kai-Sook
    • Korean Journal of Child Studies
    • /
    • v.32 no.5
    • /
    • pp.135-150
    • /
    • 2011
  • The purpose of this study was to examine the interaction strategies used by typically developing boys and girls in their dealings with young children with ADHD in free play situations in inclusive classes. This was done in order to gain an in-depth understanding of the meaning of their interaction strategies. The subjects were 52 typically developing children (comprising 27 boys, 25 girls) and 3 young children with ADHD. The findings were as follows : First, the overall frequency of interaction strategies with the young children with ADHD was greater among the young female children (n = 372) than the young male children (n = 298). Second, when the utterance strategies of the male and female children were sub-categorized, both the male children (79.5%) and the female children (57.0%) mostly made use of avoidance strategies, one of the typical withdrawal strategies. Third, the interaction strategy of control represented 42.0 percent and as such was identified as the most prevalent interaction strategy utilized by the young male children studied. In the case of the young female children, obliging strategies were the most common interaction strategies representing 33.1 percent of the total used. In the light of the findings yielded from this study, some educational recommendations are provided.

Experimental study on the interaction force between a permanent magnet and a superconducting roll stack

  • Wenxin Li;Tianhui Yang;Ying Xin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.11-15
    • /
    • 2023
  • In recent years, the interaction force between a permanent magnet and a closed superconductor coil has been gradually investigated in depth. The principle and application potential of an energy storage/convertor composed of a magnet and a closed superconducting coil have been proved. However, the study on the force between a magnet and a non-closed superconducting coil (superconducting roll stack) has hardly been reported in previous literature. The behavior of this kind of interaction and its influence to the interaction force between a permanent and a closed superconducting coil are also still unclear. In this paper, first we investigated the interaction force between a magnet and a superconducting roll stack. Then, a series of experiments were designed and conducted to clarify the factors affected the interaction force, including the geometrical parameters of the superconducting roll stack and the magnetic field density at the roll stack. Moreover, the comparison of the interaction forces between the magnet and roll stack or a closed coil was also introduced.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Analysis of Piled Piers Considering Riverbed Scouring (교각세굴을 고려한 말뚝기초의 해석)

  • Jeong, Sang-Seom;Suh, Jung-Ju;Won, Jin-Oh
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.43-50
    • /
    • 2002
  • This paper describes a simplified numerical procedure for analyzing the response of bridge pier foundations due to riverbed scouring. A computationally efficient algorithm to analyze the behavior of a pile group is proposed by considering soil-pile, pile-cap, and pile-fluid interactions. The complex phenomenon of the pile-soil interaction is modeled by discrete nonlinear soil springs (p-y, t-z and q-z curves). The pile-cap interaction is considered by geometric configuration of the piles in a group and connectivity conditions between piles and the cap. The pile-fluid interaction is incorporated into the procedure by reducing the stiffness of the soil-pile reactions as a result of nonlinearity and degradation of the soil stiffness with river bridge scouring. Through the numerical study, it is shown that the maximum bending moment increases with increasing scour depth. Thus it is desirable to check the stability elf pile groups based on soil-pile and pile-cap interactions by considering scouring depth in the riverbed.

MPEG-U based Advanced User Interaction Interface System Using Hand Posture Recognition (손 자세 인식을 이용한 MPEG-U 기반 향상된 사용자 상호작용 인터페이스 시스템)

  • Han, Gukhee;Lee, Injae;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.83-95
    • /
    • 2014
  • Hand posture recognition is an important technique to enable a natural and familiar interface in HCI(human computer interaction) field. In this paper, we introduce a hand posture recognition method by using a depth camera. Moreover, the hand posture recognition method is incorporated with MPEG-U based advanced user interaction (AUI) interface system, which can provide a natural interface with a variety of devices. The proposed method initially detects positions and lengths of all fingers opened and then it recognizes hand posture from pose of one or two hands and the number of fingers folded when user takes a gesture representing a pattern of AUI data format specified in the MPEG-U part 2. The AUI interface system represents user's hand posture as compliant MPEG-U schema structure. Experimental results show performance of the hand posture recognition and it is verified that the AUI interface system is compatible with the MPEG-U standard.

Analysis of Texture Characteristics of Asphalt Pavements (아스팔트 포장의 노면조직 특성 분석)

  • Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • PURPOSES : Pavement textures can be categorized into four according to wavelength: microtexture, macrotexture, megatexture (roads), and roughness. Pavement surface texture influences a number of aspects of tire-pavement interaction such as wet-weather friction, tire-pavement noise, splash, spray, tire-wear, and rolling resistance. In particular, macrotexture is the pavement surface characteristic that considerably impacts tire-pavement noise. In general, it can be demonstrated that tire-pavement noise increases with the increase of texture depth and wavelength. Recently, mean profile depth (MPD) and wavelength have been used to evaluate tire-pavement noise. This study aimed to identify the relationship between mean profile depth and average wavelength for asphalt pavement based on the information obtained on a number of asphalt pavement sections. METHODS : Profile data were collected from a number of expressway sections in Korea. In addition, mean profile depth and average wavelength were calculated by using this profile data. Statistical analysis was performed to determine the correlationship between mean profile depth and average wavelength. RESULTS:This study demonstrates a linear relationship between mean profile depth and average wavelength for asphalt concrete pavement. CONCLUSIONS :The strong relationship between mean profile depth and average wavelength of asphalt pavement was determined in this study.