• 제목/요약/키워드: Depth of Cut

검색결과 732건 처리시간 0.036초

Effects of the Grinding Conditions on the Machining Elasticity Parameter

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.62-67
    • /
    • 2003
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed, depth of cut, on this parameter experimentally, Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

평면연삭조건이 가공탄성계수에 미치는 영향 (Effects of the Surface Grinding Conditions on the Machining Elasticity Parameter)

  • 임관혁;김강
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.26-32
    • /
    • 1998
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed and depth of cut, on this parameter experimentally. Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

  • PDF

초정밀 절삭에서의 가공깊이 최소화에 관한연구 (A Study on the minimizing of cutting depth in sub-micro machining)

  • 손성민;허성우;안중환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

유연성 디스크 연삭가공 평면가공구간에 대한 연구 (A Study on the Flat Surface Zone of the Flexible Disk Grinding System)

  • 유송민
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2007
  • Inherent dynamic interaction between flexible disk and workpiece creates partially non-flat surface profile. A flat zone was defined using minimum depth of engagement. Several key parameters were defined to explain the characteristics of the zone. Process conditions including disk rotation speed, initial depth of cut and feed speed were varied to produce product profile database. Correlation between key factors was examined to find the characteristic dependencies. Trends of key parameters were displayed and explained. Higher flat zone ratio was observed for lower depth of cut and higher disk rotation speed. Ratio of minimum depth of cut against target depth of cut increased for higher feed speed and disk rotation speed but was insensitive to the depth of cut variation. The process transition was visualized by continuously displaying instantaneous orientation of the deflected disk and the location of key parameters were clearly marked for comparison.

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.

티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링 (Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium)

  • 박승섭;김화영;안중환
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

연삭가공특성에 미치는 연삭입자 최대물림깊이의 영향 (Effects of the maximum grit depth of cut on grinding characteristics)

  • 김효정;허인호;우성대;이영문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.15-20
    • /
    • 1999
  • In this study, the effects of the maximum grit depth of cut on the grinding characteristics were investigated. And AE signals produced during grinding processes have been studied to find out the appropriate AE parameters for assessing grinding processes. S45C steel has been ground under the conditions yielding removal rate of workpiece, 100, 200, 300 and 400rnm$^3$/min which was achived by altering workpiece velocity($\upsilon$) and apparent depth of cut(Z). According to the experimental results, the value of surface roughness increases but grinding power, energy rate of AE signal(AErms$^2$) and specific grinding energy consumed decrease with increase of the maximum grit depth of cut.

  • PDF

연삭가공특성에 미치는 연삭입자 최대물림깊이의 영향 (Effects of the maximum grit depth of cut on grinding characteristics)

  • 허인호
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.63-69
    • /
    • 1999
  • In tis study the effects of the maximum grit depth of cut on the grinding characteristics were investigated. They are AE signals produced during grinding processes have been studied to find out the appropriate AE parameters for assessing grinding processes. SM45C steel has been ground under the conditions yielding removal rate of workpiece 100, 200,300, and 400m{{{{ {m }^{3 } }}}}/min which was achieved by altering workpiece velocity(v) and apparent depth of cut(Z). According to the experimental result the value of surface roughness increases but grinding power energy rate of AE signal(AErmas2) and specific grinding energy consumed decrease as increasing the maximum grit depth of cut.

  • PDF

국내 중저심도(20~80m) 수직구에 적합한 Stage-Cut 공법 개발 (Development of Stage-Cut Method for medium depth Shaft in Korea)

  • 홍창수;이지수;황대진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1522-1529
    • /
    • 2009
  • When a shaft is excavated in Korea, the mechanized method such as RBM(Raise Boring Machine) or RC(Raise Climber) is used independently of depth. But usually, the mechanized method is useful for the deep depth. On the contrary, when the depth of shaft is short, the cost of excavation increase. So in the case of shaft constructon less than 100m, we need to consider more suitable method of shaft construction such as Stage-cut which is one of blasting methods. Stage-Cut is widely used in the field of shaft construction in Japan as a tool of rock excavation. The main purpose of this study is to provide technical guidance for design and construction of shafts in rock, using Stage-cut method which is suitable for 20m~80m depth shaft. In this study, Blasting tests was performed in field, according to rock classification. Finally, the stage-cut method which is suitable for the geology of Korea was developed.

  • PDF

물림조건에 따른 경화강의 절삭저항 특성에 관한 연구 (A Study on the Cutting Resistance Characteristics of Hardended Steel according to Engagement Condition)

    • 한국생산제조학회지
    • /
    • 제5권3호
    • /
    • pp.58-65
    • /
    • 1996
  • This thesis is concerned with the study on the characteristics of the cutting resistance occurring in finish machining of hardened steels such as carbon tool steel and alloy tool steel by a ceramic tool with nose radius. For the purpose, the shape of cutting cross-section made at nose part of the tool was analyzed geometrically and the wear mechanism on the flank face of the ceramic tool is investigated. In order to investigate the characteristics of cutting resistance two categories of cutting conditions are suggested, along with geometrical analysis. One category includes the conventional cutting parameters such as feed and depth of cut, another containing new cutting parameters of thickness of cut and width of cut etc. Thickness of cut width of cut and area of undeformed chip section formed by the condition of engagement between workpiece and cutting tool are determined as the function of feed, depth of cut and nose radius of cutting too, And an effective approach angle is determined by depth of cut and nose radius.

  • PDF