• Title/Summary/Keyword: Depth image-based rendering

Search Result 95, Processing Time 0.029 seconds

LDI (Layered Depth Image) Representation Method using 3D GIS Implementation (LDI 표현방법을 이용한 3D GIS 구현)

  • Song Sang-Hun;Jung Young-Kee
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.231-239
    • /
    • 2006
  • Geographic information system (GIS) geography reference it talks the software system which is possible. When like this geographic information system in key feature trying to observe the problem which is an expression of geography information in the center, the research and development with 3 dimension expressions is active from 2 dimension expressions of existing and it is advanced. double meaning geography information which is huge to be quick, the place where it controls efficiently there is a many problem, the ring from the dissertation which it sees and 3 dimensions and efficient scene of the GIS rendering compared to the ring from hazard image base modeling and rendering compared to hazard proposal LDI (Layered Depth Images) it uses GIS rendering compared to the ring to sleep it does. It acquired the terrain data of 3 dimensions from thread side base method. terrain data of 3 dimensions which are acquired like this the place where it has depth information like this depth information in base and the LDI, it did it created. Also it was a traditional modeling method and 3DS-Max it used and it created the LDI. It used LDI information which is acquired like this and the GIS of more efficient 3 dimensions rendering compared to the possibility of ring it was.

  • PDF

Hole-Filling Method for Depth-Image-Based Rendering for which Modified-Patch Matching is Used (개선된 패치 매칭을 이용한 깊이 영상 기반 렌더링의 홀 채움 방법)

  • Cho, Jea-Hyung;Song, Wonseok;Choi, Hyuk
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.186-194
    • /
    • 2017
  • Depth-image-based rendering is a technique that can be applied in a variety of 3D-display systems. It generates the images that have been captured from virtual viewpoints by using a depth map. However, disoccluded hole-filling problems remain a challenging issue, as a newly exposed area appears in the virtual view. Image inpainting is a popular approach for the filling of the hole region. This paper presents a robust hole-filling method that reduces the error and generates a high quality-virtual view. First, the adaptive-patch size is decided using the color and depth information. Also, a partial filling method for which the patch similarity is used is proposed. These efforts reduce the error occurrence and the propagation. The experiment results show that the proposed method synthesizes the virtual view with a higher visual comfort compared with the existing methods.

Real-time Gaussian Hole-Filling Algorithm using Reverse-Depth Image (반전된 Depth 영상을 이용한 실시간 Gaussian Hole-Filling Algorithm)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.53-65
    • /
    • 2012
  • Existing method of creating Stereoscopy image, creates viewpoint image from the left and right by shooting one object with 2 lens in certain distance. However, in case of 3-D TV using Stereoscopy camera, the necessity to transmit 2 viewpoint images from the left and right simultaneously, increases the amount of bandwidth. Various and more effective alternatives are under discussion. Among the alternatives, DIBR(Depth Image Based Rendering) creates viewpoint images from the left and right using one image and its Depth information, thus decreasing the amount of transmitted bandwidth. For this reason, there have been various studies on Algorithm to create DIBR Image in existing Static Scene. In this paper, I would like to suggest Gaussian Hole-filling solution, which utilizes reverse-depth image to fill the hole naturally, while minimizing distortion of background. In addition, we have analyzed the effectiveness of each Algorithm by comparing and calculating its functions.

A Study on Create Depth Map using Focus/Defocus in single frame (단일 프레임 영상에서 초점을 이용한 깊이정보 생성에 관한 연구)

  • Han, Hyeon-Ho;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.4
    • /
    • pp.191-197
    • /
    • 2012
  • In this paper we present creating 3D image from 2D image by extract initial depth values calculated from focal values. The initial depth values are created by using the extracted focal information, which is calculated by the comparison of original image and Gaussian filtered image. This initial depth information is allocated to the object segments obtained from normalized cut technique. Then the depth of the objects are corrected to the average of depth values in the objects so that the single object can have the same depth. The generated depth is used to convert to 3D image using DIBR(Depth Image Based Rendering) and the generated 3D image is compared to the images generated by other techniques.

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

Synthesis of Multi-View Images Based on a Convergence Camera Model

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.197-200
    • /
    • 2011
  • In this paper, we propose a multi-view stereoscopic image synthesis algorithm for 3DTV system using depth information with an RGB texture from a depth camera. The proposed algorithm synthesizes multi-view images which a virtual convergence camera model could generate. Experimental results showed that the performance of the proposed algorithm is better than those of conventional methods.

Hole-Filling Methods Using Depth and Color Information for Generating Multiview Images

  • Nam, Seung-Woo;Jang, Kyung-Ho;Ban, Yun-Ji;Kim, Hye-Sun;Chien, Sung-Il
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.996-1007
    • /
    • 2016
  • This paper presents new hole-filling methods for generating multiview images by using depth image based rendering (DIBR). Holes appear in a depth image captured from 3D sensors and in the multiview images rendered by DIBR. The holes are often found around the background regions of the images because the background is prone to occlusions by the foreground objects. Background-oriented priority and gradient-oriented priority are also introduced to find the order of hole-filling after the DIBR process. In addition, to obtain a sample to fill the hole region, we propose the fusing of depth and color information to obtain a weighted sum of two patches for the depth (or rendered depth) images and a new distance measure to find the best-matched patch for the rendered color images. The conventional method produces jagged edges and a blurry phenomenon in the final results, whereas the proposed method can minimize them, which is quite important for high fidelity in stereo imaging. The experimental results show that, by reducing these errors, the proposed methods can significantly improve the hole-filling quality in the multiview images generated.

Reconstruction of Color-Volume Data for Three-Dimensional Human Anatomic Atlas (3차원 인체 해부도 작성을 위한 칼라 볼륨 데이터의 입체 영상 재구성)

  • 김보형;이철희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.199-210
    • /
    • 1998
  • In this paper, we present a 3D reconstruction method of color volume data for a computerized human atlas. Binary volume rendering which takes the advantages of object-order ray traversal and run-length encoding visualizes 3D organs at an interactive speed in a general PC without the help of specific hardwares. This rendering method improves the rendering speed by simplifying the determination of the pixel value of an intermediate depth image and applying newly developed normal vector calculation method. Moreover, we describe the 3D boundary encoding that reduces the involved data considerably without the penalty of image quality. The interactive speed of the binary rendering and the storage efficiency of 3D boundary encoding will accelerate the development of the PC-based human atlas.

  • PDF

Hole-filling Based on Disparity Map for DIBR

  • Liu, Ran;Xie, Hui;Tian, Fengchun;Wu, Yingjian;Tai, Guoqin;Tan, Yingchun;Tan, Weimin;Li, Bole;Chen, Hengxin;Ge, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2663-2678
    • /
    • 2012
  • Due to sharp depth transition, big holes may be found in the novel view that is synthesized by depth-image-based rendering (DIBR). A hole-filling method based on disparity map is proposed. One important aspect of the method is that the disparity map of destination image is used for hole-filling, instead of the depth image of reference image. Firstly, the big hole detection based on disparity map is conducted, and the start point and the end point of the hole are recorded. Then foreground pixels and background pixels are distinguished for hole-dilating according to disparity map, so that areas with matching errors can be determined and eliminated. In addition, parallaxes of pixels in the area with holes and matching errors are changed to new values. Finally, holes are filled with background pixels from reference image according to these new parallaxes. Experimental results show that the quality of the new view after hole-filling is quite well; and geometric distortions are avoided in destination image, in contrast to the virtual view generated by depth-smoothing methods and image inpainting methods. Moreover, this method is easy for hardware implementation.

A New Copyright Protection Scheme for Depth Map in 3D Video

  • Li, Zhaotian;Zhu, Yuesheng;Luo, Guibo;Guo, Biao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3558-3577
    • /
    • 2017
  • In 2D-to-3D video conversion process, the virtual left and right view can be generated from 2D video and its corresponding depth map by depth image based rendering (DIBR). The depth map plays an important role in conversion system, so the copyright protection for depth map is necessary. However, the provided virtual views may be distributed illegally and the depth map does not directly expose to viewers. In previous works, the copyright information embedded into the depth map cannot be extracted from virtual views after the DIBR process. In this paper, a new copyright protection scheme for the depth map is proposed, in which the copyright information can be detected from the virtual views even without the depth map. The experimental results have shown that the proposed method has a good robustness against JPEG attacks, filtering and noise.