• Title/Summary/Keyword: Depth function

Search Result 1,329, Processing Time 0.026 seconds

Enhancing Depth Measurements in Depth From Focus based on Mutual Structures (상호 구조에 기반한 초점으로부터의 깊이 측정 방법 개선)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.17-21
    • /
    • 2022
  • A variety of techniques have been proposed in the literature for depth improvement in depth from focus method. Unfortunately, these techniques over-smooth the depth maps over the regions of depth discontinuities. In this paper, we propose a robust technique for improving the depth map by employing a nonconvex smoothness function that preserves the depth edges. In addition, the proposed technique exploits the mutual structures between the depth map and a guidance map. This guidance map is designed by taking the mean of image intensities in the image sequence. The depth map is updated iteratively till the nonconvex objective function converges. Experiments performed on real complex image sequences revealed the effectiveness of the proposed technique.

Measurements of Velocity Distribution Function in Circular Open Channel Flows by Stereoscopic PIV (3차원 PIV에 의한 원형 개수로 유동의 속도분포 함수 측정)

  • Yoon, Ji-In;Sung, Jae-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • For the first time, the present study has measured the velocity distribution function in circular open channel flow in a three-dimensional shape using a stereoscopic PIV system. For a given channel slope, water depth was varied from 30% to 80% of the channel diameter. Then, the characteristics of the velocity distribution function was compared according to the change of the water depth. Unlike a rectangular channel, the present experiment exhibited quite different shapes in the velocity distribution function whether the water depth is higher than 50% or not. Especially, the position of maximum velocity in the central and side wall changes in a different manner for the water depth above 50%. By differentiating the velocity distribution function, local wall friction coefficient was evaluated as a function of wall position. If the water depth goes down, the difference between the maximum and minimum values in the local wall friction coefficient increases, and the averaged value a1so increases.

Mapping Snow Depth Using Moderate Resolution Imaging Spectroradiometer Satellite Images: Application to the Republic of Korea

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.625-638
    • /
    • 2018
  • In this paper, we derive i) a function to estimate snow cover fraction (SCF) from a MODIS satellite image that has a wide observational area and short re-visit period and ii) a function to determine snow depth from the estimated SCF map. The SCF equation is important for estimating the snow depth from optical images. The proposed SCF equation is defined using the Gaussian function. We found that the Gaussian function was a better model than the linear equation for explaining the relationship between the normalized difference snow index (NDSI) and the normalized difference vegetation index (NDVI), and SCF. An accuracy test was performed using 38 MODIS images, and the achieved root mean square error (RMSE) was improved by approximately 7.7 % compared to that of the linear equation. After the SCF maps were created using the SCF equation from the MODIS images, a relation function between in-situ snow depth and MODIS-derived SCF was defined. The RMSE of the MODIS-derived snow depth was approximately 3.55 cm when compared to the in-situ data. This is a somewhat large error range in the Republic of Korea, which generally has less than 10 cm of snowfall. Therefore, in this study, we corrected the calculated snow depth using the relationship between the measured and calculated values for each single image unit. The corrected snow depth was finally recorded and had an RMSE of approximately 2.98 cm, which was an improvement. In future, the accuracy of the algorithm can be improved by considering more varied variables at the same time.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

A Study on Divided Shirt Pattern -Fro influential Factor on the Appearance and the Function- (디바이디드 스커트(Divided Shirt)의 패턴 연구 -외관과 기능성에 영향을 미치는 요인을 중심으로-)

  • 서미아;이미옥
    • The Research Journal of the Costume Culture
    • /
    • v.5 no.4
    • /
    • pp.112-129
    • /
    • 1997
  • This research, focused on the curved of the lower body, designated abdomen and hip gradient, crotch depth and crotch width the factors for which are able to influence on the appearence and the function of Divided Skirt and analized the changes when that were applied to a real pattern, and so the purpose of this research is to show the basic documents needed to design a Divided Skirt pattern fitting with the wear purpose and usage. The following are the results of this research. 1. The abdomen and hip gradient turned out as the most influential factor on the appearance and the function of Divided Skirt. The pattern of which the abdomen and hip gradient was designated as vertical zero degree, showed an excellent appearance and in case of function, the pattern of which thw angle of the abdomen and hip gradient of human body type was applied to itself without a particular designation turned out excellent. 2. In case of crotch depth, the pattern which had crotch depth+2㎝, had a better appearance but influced nothing on function. 3. The factor of crotch width didn\`t have any influence on the appearance and function of Divided Skirt. 4. Referring to the results of the above, the Divided Skirt pattern of which the appearance and the function turned excellent, had the angle of abdomen gradient 4 degrees, the angle abdomen gradient 4 degrees, the angle of hip gradient/2+2.5 degrees, crotch depth+2㎝ and crotch width following human body type. In case of Divied Skirt worn when going out, the pattern which had the angle of abdomen and hip gradient vertical zero degree, crotch depth+2㎝ and crotch width following human body type, turned out suitable. Also, the suitable pattern of Divided Skirt for working had the abdomen and hip gradient following human body type, crotch depth+2㎝ and covering girth diameter/2±1㎝.

  • PDF

Quantitative analysis of increase in depth of focus using Wigner distribution function (Wigner 분포 함수를 초점 심도 증가의 정량적 해석)

  • 장남영;강호정;은재정;최평석
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.385-389
    • /
    • 2000
  • A phase-retardation function which was derived from Wigner distribution function (WDF) is used to increase a focal depth of a radially symmetric optical system. The WDF for one-dimensional signal is represented as a two-dimensional function of phasespace ($\chi,\zeta$), and a normalized irradiance is described as a form of the Strehl ratio (SR). The increase in the focal depth is accomplished by delivering a shearing tilt a that represents a characteristic of free space propagation with simple manipulation in the WDF space. In this paper we propose a method for evaluating the focal depth quantitatively by representing the phaseretardation function in terms of the focal depth term. In order to verify the validity of the proposed method, we compared the numerically analyzed result with that of J. Sochki's study. study.

  • PDF

A more efficient numerical evaluation of the green function in finite water depth

  • Xie, Zhitian;Liu, Yujie;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.399-412
    • /
    • 2017
  • The Gauss-Legendre integral method is applied to numerically evaluate the Green function and its derivatives in finite water depth. In this method, the singular point of the function in the traditional integral equation can be avoided. Moreover, based on the improved Gauss-Laguerre integral method proposed in the previous research, a new methodology is developed through the Gauss-Legendre integral. Using this new methodology, the Green function with the field and source points near the water surface can be obtained, which is less mentioned in the previous research. The accuracy and efficiency of this new method is investigated. The numerical results using a Gauss-Legendre integral method show good agreements with other numerical results of direct calculations and series form in the far field. Furthermore, the cases with the field and source points near the water surface are also considered. Considering the computational efficiency, the method using the Gauss-Legendre integral proposed in this paper could obtain the accurate numerical results of the Green function and its derivatives in finite water depth and can be adopted in the near field.

Detection Range Estimation Algorithm for Active SONAR System and Application to the Determination of Optimal Search Depth (능동 소나 체계에서의 표적 탐지거리 예측 알고리즘과 최적 탐지깊이 결정에의 응용)

  • 박재은;김재수
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.62-70
    • /
    • 1994
  • In order to estimate the detection range of a active SONAR system, the SONAR equation is commonly used. In this paper, an algorithm to calculate detection range in active SONAR system as function of SONAR depth and target depth is presented. For given SONAR parameters and environment, the transmission loss and background level are found, signal excess is computed. Using log-normal distribution, signal excess is converted to detection probability at each range. Then, the detection range is obtained by integrating the detection probability as function of range for each depth. The proposed algorithm have been applied to the case of omni-directional source with center frequency 30Hz for summer and winter sound profiles. It is found that the optimal search depth is the source depth since the detection range increase at source depth where the signal excess is maximized.

  • PDF

Pedestrian Distribution in High-Rise Commercial Complexes: An Analysis of Integrating Spatial and Functional Factors

  • Xu, Leiqing;Xia, Zhengwei
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • One of the key problems in the design of high-rise commercial complex is how to guide reasonable pedestrian distribution in commercial space. In this study, pedestrian distribution in three high-rise commercial complexes in Shanghai and Hong Kong was studied using spatial configuration analysis software Space Syntax and quantification of physical elements in commercial spaces, such as functional attractiveness, entrances, escalators, level variations and passage width. Additionally, in an attempt to integrate functions with spatial integration and spatial depth, two combination variables, the spatial coefficient of function (IF) and spatial depth coefficient of function (F/D), were proposed. The results of the correlation analysis and multiple regression analyses reflected the following: (1) Regarding the influence on pedestrian distribution, there was a synergistic and complementary relationship between function and space; (2) The comprehensive flow distribution analytic model could successfully interpret flow distribution in high-rise commercial complexes and its R Square ranged up to about 70% in the three cases; (3) The spatial coefficient of function (IF) and spatial depth coefficient (F/D) could effectively integrate functions and spatial configuration, which could help close the gap between over-emphasis on function in commercial research and the lack of consideration of function in space-syntax analysis.