• 제목/요약/키워드: Depth estimation of target

검색결과 65건 처리시간 0.026초

다이파 소노부이를 활용한 수중표적 심도 추정 (Depth estimation of an underwater target using DIFAR sonobuoy)

  • 이영구
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.302-307
    • /
    • 2019
  • 현대 대잠전에 있어 잠수함에 대한 2차원 위치추정에 다양한 방법들이 있다. 잠수함에 대한 보다 효과적인 추적 및 공격을 위해 표적 심도는 매우 중요한 요소이다. 하지만 현재까지도 잠수함의 심도를 찾아낸다는 것은 어려운 일이다. 본 논문에서는 최단접근점(Closest Point of Approach, CPA) 전후의 표적 접촉방위와 표적 도플러 신호 등 다이파 소노부이 접촉정보를 이용한 잠수함 심도 추정 기법을 제안하고자 한다. 표적의 상대심도는 표적과 다이파 소노부이의 청음기 간 사선거리 및 수평거리에 피타고라스 정리를 적용하여 결정된다. 이때 사선거리는 도플러변이와 표적 속도에 의해서 계산되며, 수평거리는 표적에 대한 연속된 접촉방위와 표적의 이동거리에 삼각함수를 적용하여 얻을 수 있다. 본 논문에서 제시된 알고리즘의 성능은 소노부이-표적 간 수평거리 및 상대심도에 의해 결정되는 고각과 도플러 변이 값의 측정 정확성에 의해 좌우됨을 시뮬레이션을 통해 알 수 있다.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.

하이퍼스펙트럴 위성영상을 이8한 연안지역의 수심산정 (Estimation of Water Depth in Coastal Area Using Hyperspectral Satellite Imagery)

  • 이종출;김대현;이영도;유영화
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.165-169
    • /
    • 2006
  • Purpose of this research is estimation of water depth by hyperspectral remote sensing in area that access of ship is difficult This research used EO-1 Hyperion satellite imagery. Atmospheric and geometric correction is executed. Compress of band used MNF transforms. Diffuse Attenuation Coefficient of target area is decided in imagery for water depth estimation. Determination of Emdmember in pixel is using Linear Spectral Unmixing techniques. Water depth estimated using this result.

  • PDF

초분광 위성영상을 이용한 수심산정에 관한 연구 (A Study on Estimation of Water Depth Using Hyperspectral Satellite Imagery)

  • 유영화;김윤수;이선구
    • 항공우주기술
    • /
    • 제7권1호
    • /
    • pp.216-222
    • /
    • 2008
  • 본 연구에서는 초분광 원격탐사 기법을 이용하여 선박의 접근이 어려운 연안지역의 수심을 산정하고자 한다. 연구에 사용된 영상은 초분광 위성영상인 EO-1 Hyperion 영상이며, 대기보정 및 기하보정을 실시하였다. 보정된 영상은 MNF 변환을 사용하여 밴드를 압축하였다. 또한 각 화소의 실제적인 수심을 산정하기 위하여 대상지역의 Diffuse Attenuation Coefficient를 영상내에서 결정하였다. 그리고 Linear Spectral Unmixing 기법을 사용하여 대상 화소의 Emdmember를 결정하고, 수심을 산정하였다.

  • PDF

채널 임펄스 응답 패턴을 이용한 음원 깊이 추정 모호성 제거 기법 (Method for eliminating source depth ambiguity using channel impulse response patterns)

  • 조성일
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.210-217
    • /
    • 2022
  • 수동 소나 시스템에서 음원 깊이 추정 분야는표적 식별, 추적 등 다양한 전술에 활용할 수 있기 때문에 많은 연구가 지난 수십년간 진행되어 왔다. 본 논문은 기존 논문[조성일 외, 한국음향학회지 제38권 제1호, 120-127(2019)]의 문제점이었던 음원 깊이가두 곳에서 추정되는 모호성을 해결하는데 목적이 있다. 해수면과 해저면에 반사되어 나타나는채널 임펄스 응답의 위상천이 패턴을 이용하여 모호성을 제거하며, 제거 후 하나의 깊이에서 채널 임펄스 응답의 교차점을 통해 음원의깊이를 추정한다. 음원에 대한 정보가 없고, 연속적인 신호 혹은 소음에서 채널 임펄스 응답을 추정하기 위해 음선 기반 블라인드 디컨벌루션 기법이 사용되며, 제안된 알고리즘은 시뮬레이션를 통하여 검증하였다.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권5호
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

River2D 모델을 이용한 섬진강의 생태유지유량 산정에 관한 연구 (Study on Ecological Instream Flow Estimation using River2D Model in the Seomjin River)

  • 노경범;박성천;진영훈;박명옥
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.822-829
    • /
    • 2011
  • The purpose of the present study is to estimate the ecological instream flow for conservation and restoration of fish habitat in running water ecosystem which has very important status for stream environment. Estimation of the ecological instream flow in the present study was carried out by application of a two-dimensional depth averaged model of river hydrodynamics, River2D model. It can model fish habitat in natural streams and rivers and assess the quality of physical habitat accoriding to the species preferences for habitat suitability. Zacco platypus and Zacco temmincki were selected as target fish species in the study area of the Seomjin river. The Habitat Suitability Criteria (HSC) developed by Sung et al. (2005) were used for target fish species, life stages and habitat conditions in the study. Weighted usable area (WUA) was computed by the River2D model considering preferences of target fish species for velocity, depth, and channel substrate. The result revealed that the ecological instream flow of $10.0m^3/s$ is needed to maintain the target fish habitat at each life stage in the river.

Restoration of underwater images using depth and transmission map estimation, with attenuation priors

  • Jarina, Raihan A.;Abas, P.G. Emeroylariffion;De Silva, Liyanage C.
    • Ocean Systems Engineering
    • /
    • 제11권4호
    • /
    • pp.331-351
    • /
    • 2021
  • Underwater images are very much different from images taken on land, due to the presence of a higher disturbance ratio caused by the presence of water medium between the camera and the target object. These distortions and noises result in unclear details and reduced quality of the output image. An underwater image restoration method is proposed in this paper, which uses blurriness information, background light neutralization information, and red-light intensity to estimate depth. The transmission map is then estimated using the derived depth map, by considering separate attenuation coefficients for direct and backscattered signals. The estimated transmission map and estimated background light are then used to recover the scene radiance. Qualitative and quantitative analysis have been used to compare the performance of the proposed method against other state-of-the-art restoration methods. It has been shown that the proposed method can yield good quality restored underwater images. The proposed method has also been evaluated using different qualitative metrics, and results have shown that method is highly capable of restoring underwater images with different conditions. The results are significant and show the applicability of the proposed method for underwater image restoration work.

능동 소나 체계에서의 표적 탐지거리 예측 알고리즘과 최적 탐지깊이 결정에의 응용 (Detection Range Estimation Algorithm for Active SONAR System and Application to the Determination of Optimal Search Depth)

  • 박재은;김재수
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.62-70
    • /
    • 1994
  • In order to estimate the detection range of a active SONAR system, the SONAR equation is commonly used. In this paper, an algorithm to calculate detection range in active SONAR system as function of SONAR depth and target depth is presented. For given SONAR parameters and environment, the transmission loss and background level are found, signal excess is computed. Using log-normal distribution, signal excess is converted to detection probability at each range. Then, the detection range is obtained by integrating the detection probability as function of range for each depth. The proposed algorithm have been applied to the case of omni-directional source with center frequency 30Hz for summer and winter sound profiles. It is found that the optimal search depth is the source depth since the detection range increase at source depth where the signal excess is maximized.

  • PDF