• 제목/요약/키워드: Depth control performance

검색결과 361건 처리시간 0.032초

미속 수중함의 자동심도 제어장치 설계 연구 (Design of auto-depth control system for low speed submersible vehicle)

  • 조현진;최중락;김흥열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.776-779
    • /
    • 1992
  • This paper describes the auto-depth control system with depth control tank for low speed submersible vehicle that can be used for both near surface and deeply submerged keeping operations. The PDA control algorithm is used to design controller and adaptive notch filter is designed to eliminate the dominant frequency of seaway. The computer simulations demonstrate the excellent depth keeping performance of the controller under seaway effects.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller based on Fuzzy Basis Function Expansion for UFV Depth Control

  • Kim Hyun-Sik;Shin Yong-Ku
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.217-224
    • /
    • 2005
  • Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system because the UFV contains both pitch and depth angle variables as well as multiple control planes, it requires robustness because of the possibility that it may encounter uncertainties such as parameter variations and disturbances, it requires a continuous control input because the system that has reduced power consumption and acoustic noise is more practical, and further, it has the speed dependency of controller parameters because the control forces of control planes depend on the operating speed. To solve these problems, an adaptive fuzzy sliding mode controller (AFSMC), which is based on the decomposition method using expert knowledge in the UFV depth control and utilizes a fuzzy basis function expansion (FBFE) and a proportional integral augmented sliding signal, is proposed. To verify the performance of the AFSMC, UFV depth control is performed. Simulation results show that the AFSMC solves all problems experienced in the UFV depth control system online.

수증운동체 자동심도제어 시스템 설계연구 (Design of auto-depth control system for submerged body)

  • 이동익;윤형식;최중락;양승윤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.481-484
    • /
    • 1990
  • Normal operation when deeply submerged is a relatively easy task, and human operator control can often provide adequate performance. Near surface depthkeeping, on the other hand, is difficult to both man and machine. Because of the inherent limitation of the human operator, manual control may prove inadequate for near surface depthkeeping in some sea state. This paper describe the control algorithm of an automatic depth control system for submerged body that can be used for both near surface and deeply submerged depthkeeping operations. The computer simulations demonstrate the excellent depthkeeping performance of the controller under seaway effects.

  • PDF

LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어 (Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control)

  • 양승윤;김인수;이만형
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

초공동 수중운동체의 조종면 조합에 따른 심도 및 직진 제어성능 분석 (Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle)

  • 유범열;모혜민;김승균;황종현;박정훈;전윤호
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.435-448
    • /
    • 2021
  • This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

콤바인의 자동제어(自動制御)에 관한 연구(硏究)(III) -자탈형(自脱型) 콤바인의 탈곡(脱穀)깊이 자동제어(自動制御)- (Automatic Control of the Combine(III) -Automatic Feeding Depth Control of the Head-feed Combine-)

  • 정창주;김상천;남광희
    • Journal of Biosystems Engineering
    • /
    • 제14권2호
    • /
    • pp.94-103
    • /
    • 1989
  • This study was intended to develop the automatic feeding depth control system of the head-feed combine which could feed the rice head into threshing unit at the optimal depth regardless of plant height and uneven ground surface. In the control system, one-board microcomputer was used for the controller instead of conventional electric circuits. Field test of the combine equipped with the control system was conducted to evaluate its overall performance. It was also investigated how the location and time delay of rice head sensor affect the system performance.

  • PDF

Design of the Fuzzy Sliding Mode Controller and Neural Network Interpolator for UFV Depth Control

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.176.2-176
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over nonlinear characteristics. Second, it needs accurate performance which have small overshoot phenomenon and steady state error. Third, it needs continuous control input. Finally, it needs interpolation method which can solve the speed dependency problem of controller parameters. To solve these problems, we propose adepth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF

Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving

  • Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Cho, Yonho;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.1042-1048
    • /
    • 2016
  • This paper presents a lateral displacement restoring force control for the independently rotating wheelsets (IRWs) of shallow-depth subway systems. In the case of the near surface transit, which has recently been introduced, sharp curved driving performance is required for the city center service. It is possible to decrease the curve radius and to improve the performance of the straight running with the individual torque control. Therefore, the individual torque control performance of the motor is the most important point of the near surface transit. This paper deals with a lateral displacement restoring force control for sharp curved driving. The validity and usefulness of the proposed control algorithm is verified by experimental results using a small-scale bogie system.

H$_\infty$ 서보제어를 이용한 무인 수중운동체의 심도 및 방향제어기 설계 (Depth and Course Controller Design of Autonomous Underwater Vehicles using H$_\infty$ Servo Control)

  • 김인수;정금영;양승윤;조상훈;정찬희;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.215-215
    • /
    • 2000
  • In this paper, depth and course controllers of autonomous underwater vehicles using H$_{\infty}$ servo control are proposed. An H$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H$_{\infty}$ servo problem is as follows: first, this problem is modified as an H$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The H$_{\infty}$ depth and course controllers ate designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed H$_{\infty}$ depth and course control systems.

  • PDF

무인 수중운동체의 $H_{\infty}$ 심도 및 방향 제어기 설계 ($H_{\infty}$ Depth and Course Controllers Design for Autonomous Underwater Vehicles)

  • 양승윤
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2980-2988
    • /
    • 2000
  • In this paper, H(sub)$\infty$ depth and course controllers of autonomous underwater vehicles using H(sub)$\infty$ servo control are proposed. An H(sub)$\infty$ servo problem is foumulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H(sub)$\infty$servo problem is as follows; firest, this problem is modified as an H(sub)$\infty$ control problem for the generalized plant that includes a reference input mode, and than a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach, The H(sub)$\infty$depth and course controllers are designed to satisfy the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(was force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controlled are evaluated with computer simulations, and finally these simulation results show the usefulness and applicability of the propose H(sub)$\infty$ depth and course control systems.