• Title/Summary/Keyword: Depth control

Search Result 2,379, Processing Time 0.028 seconds

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Adaptive Blowing Control Algorithm for Autonomous Control of Underwater Flight Vehicle (수중 비행체의 자율제어를 위한 적응 부상 제어 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.482-487
    • /
    • 2008
  • In case of flooding, the underwater flight vehicle (UFV) executes the blowing by blowing ballast tanks off using high pressure air (HPA), while it also uses control planes and a propulsion unit to reduce the overshoot depth caused by a flooding and blowing sequence. However, the conventional whole HPA blow-off method lets the body on the surface after blowing despite slight flooding. This results in the unnecessary mission failure or body exposure. Therefore, it is necessary to keep the body at the near surface by the blowing control while reducing the overshoot depth. To solve this problem, an adaptive blowing control algorithm, which is based on the decomposition method expanding the expert knowledge in depth control and the adaptive method using fuzzy basis function expansion (FBFE), is proposed. To verify the performance of the proposed algorithm, the blowing control of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the UFV blowing control system online.

Cure depth control using photopolymerization inhibitor in microstereolithography and fabrication of three dimensional microstructures (액속주사법을 이용한 마이크로 광조형시 광폴리머에 대한 중합억제제의 영향분석 및 삼차원 미세구조물 제조)

  • 김성훈;주재영;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.714-719
    • /
    • 2004
  • Controlling the cure depth of the Fa1260T photopolymer enhances the quality of a microstructure and minimizes its size in microstereolithography. In this work, variation of cure depth of the Fa1260T photopolymer is investigated while the concentration of a photopolymerization inhibitor as a radical quencher was varied. The energy source inducing photopolymerization was a He-Cd laser and a motorized stage controled the laser beam path accurately. The effects of process variables such as laser beam power and scan speed on the cure depth were examined. Optimum conditions for the minimum cure depth were determined as laser power of 230 W and scan speed of 40-50 m/s at the concentration of the radical quencher of 5%. The minimum cure depth at the optimal condition was 14 m. The feasibility of the fabrication of microstructures such as a microcup, microfunnel, and microgrid of 100 m size is demonstrated using Super IH process.

  • PDF

Decoupled Controller Design of an Autonomous Underwater Vehicle and Performance Test Results (수중운동체에 대한 비연성 제어기 설계 및 성능 평가)

  • Hyun, Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.768-773
    • /
    • 2013
  • In this paper, decoupled course, depth and roll controller design for an Autonomous Underwater Vehicle (AUV) and its performance test results are presented. Control system design is done using the PD control scheme based on a mathematical model of the AUV. Details of system implementation are given and the results of simulations and experiments using the prototype vehicle model are discussed. The designed controller was successfully applied to the nonlinear and coupled system under non-ideal actuator conditions.

Motion Control System of a Deep-sea Remotely Operated Vehicle, Hemire (심해 무인 잠수정 해미래의 운동 제어 시스템)

  • Choi, H.T.;Ryu, S.C.;Lee, P.M.;Lee, C.M.;Jun, B.H.;Li, J.H.;Kim, K.
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.319-321
    • /
    • 2007
  • This paper introduces a general overview of the 6000m class deep-sea ROV. Hemire and Henuvy. and then describes its motion control system. It is developed by Korea Ocean Research & Development Institute(KORDI) for 6 years since 2001. sponsored by the Ministry of Maritime Affairs and, Fisheries (MOMAF). Hemire is remotely operated by a fiber optic telemetry. where 6 thrusters are controlled by operator in manual mode and by auto depth control and auto heading control in auto mode. In this paper. operational mechanism of manual and automatic mode with some convenient functions for operator is desc.ribed. Finally, results of sea trial conducted at the Philippine sea where a depth is 5.770m are shown.

  • PDF

A fuzzy sliding mode controller design for the hovering system of underwater vehicles (수중운동체의 호버링시스템을 위한 퍼지 슬라이딩 모드 제어기 설계)

  • Kim, Jong-Sik;Kim, Sung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • Nonlinear depth control algorithms for the hovering system of underwater vehicles are presented. In this paper, a nonlinear effect in heave motion for underwater vehicles, a deadzone effect of the flow control valve in the hovering tank and an impact disturbance are considered. In this situation, in order to choose a desirable controller, sliding mode controller and fuzzy sliding mode controller are designed and compared. The computer simulation results show that the fuzzy sliding mode control system is more suitable in order to maintain a desirable depth of an underwater vehicle with a deadzone and impact disturbance.

  • PDF

Modeling of Depth/Width of Cut for Abrasive Water Jet Milling of Titanium (티타늄의 워터젯 밀링을 위한 가공깊이/폭 모델링)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • Because of the increasing tool cost for cutting hard-to-cut materials, abrasive water jet (AWJ) milling recently has been regarded as a potential alternative machining method. However, it is difficult to control the depth and width of cut in AWJ milling because they vary depending on many AWJ cutting parameters. On 27 conditions within a limited range of pressure, feed rate, and abrasive flow rate, AWJ cutting was conducted on titanium, and depth profiles were measured with a laser sensor. From the depth profile data, depth and width of cut were acquired at each condition. The relationships between depth and parameters and between width and parameters were derived through regression analysis. The former can provide proper cutting conditions and the latter the proper pick feed necessary to generate a milled surface. It is verified that pressure mostly affects depth, whereas abrasive flow rate mostly affects width.

Emergence and Growth of Weeds and Their Chemical Control in Paddy Field under Different Water Depths (담수심(湛水深)에 따른 논 잡초발생(雜草發生) 상태(狀態)와 제초제(除草劑) 효과(效果)에 미치는 영향(影響))

  • Ku, Y.C.;Oh, Y.J.;Lee, J.H.
    • Korean Journal of Weed Science
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1982
  • This experiment was conducted to evaluate weed control effect of Butachlor, Oxadiazon, and Bifenox under three levels of water depth (0, 3, 6 cm). Number of E. crusgall. and M. vaginalis decreased as water depth increased while that of P. distinctus showed the opposite trend. Water depth did not influence number of E. kuroguwai and C. serotinus. Weed control effect of Butachlor and Oxadiazon was best at 3 cm water depth at while that of Bifenox was best at 6 cm water depth. Injury of Butachlor to rice decreased as water depth increased while that of Oxadiazon and Bifenox showed opposite trend.

  • PDF

Depth Measurement of Materials Attached to Cylinder Using Line Laser (라인 레이저를 이용한 원통 부착물의 심도 측정)

  • Kim, Yongha;Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Line-laser beams are used for accurate measurement of 3D shape, which is robust to external illumination. For depth measurement, we project a line-laser beam across an object from the face and take an image of the beam on the object surface using a CCD camera at some angle with respect to the face. For shape measurement, we project parallel line-laser beams with narrow line to line distance. When a layer of thin materials attached to a cylinder is long narrow along its circumference, we can measure the shape of the layer with a small number of parallel line beams if we project line beams along the circumference of the cylinder. Measurement of the depth of the attached materials on a line-laser beam is based on the number of pixels between an imaginary line along the imaginary cylinder without the attached materials and the beam line along the materials attached to the cylinder. For this we need to localize the imaginary line in the captured image. In this paper, we model the shape of the line as an ellipse and localize the line with least square estimate. The proposed method results in smaller error (maximum 0.24mm) than a popular 3D depth camera (maximum 1mm).

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF