• Title/Summary/Keyword: Depth Interpolation

Search Result 118, Processing Time 0.031 seconds

An Image Coding Algorithm for the Representation of the Set of the Zoom Images (Zoom 영상 표현을 위한 영상 코딩 알고리듬)

  • Jang, Bo-Hyeon;Kim, Do-Hyeon;Yang, Yeong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.498-508
    • /
    • 2001
  • In this paper, we propose an efficient coding algorithm for the zoom images to find the optimal depth and texture information. The proposed algorithm is the area-based method consisting of two consecutive steps, i) the depth extraction step and ii) the texture extraction step. The X-Y plane of the object space is divided into triangular patches and the depth value of the node is determined in the first step and then the texture of the each patch is extracted in the second step. In the depth extraction step, the depth of the node is determined by applying the block-based disparity compensation method to the windowed area centered at the node. In the second step, the texture of the triangular patches is extracted from the zoom images by applying the affine transformation based disparity compensation method to the triangular patches with the depth value extracted from the first step. To improve the quality of image, the interpolation is peformed on the object space instead of the interpolation on the image plane.

  • PDF

RAY-SPACE INTERPOLATION BYWARPING DISPARITY MAPS

  • Moriy, Yuji;Yendoy, Tomohiro;Tanimotoy, Masayuki;Fujiiz, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.583-587
    • /
    • 2009
  • In this paper we propose a new method of Depth-Image-Based Rendering (DIBR) for Free-viewpoint TV (FTV). In the proposed method, virtual viewpoint images are rendered with 3D warping instead of estimating the view-dependent depth since depth estimation is usually costly and it is desirable to eliminate it from the rendering process. However, 3D warping causes some problems that do not occur in the method with view-dependent depth estimation; for example, the appearance of holes on the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Depth discontinuity causes artifacts on the rendered image. In this paper, these problems are solved by reconstructing disparity information at virtual camera position from neighboring two real cameras. In the experiments, high quality arbitrary viewpoint images were obtained.

  • PDF

Depth Map Based Distributed Multi-view Video Coding Scheme through an Efficient Side Information Generation (효율적인 보조 정보 생성을 통한 깊이지도 기반의 분산 다시점 비디오 코딩 기법)

  • Yoo, Ji-Hwan;Lee, Dong-Seok;Kim, Tae-June;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1093-1103
    • /
    • 2009
  • In this paper, we propose a new depth map based distributed multi-view video coding algorithm through an efficient side information generation. A distributed video coding scheme corrects errors between an original image and side information generated at a decoder by using channel coding techniques. Therefore, the more accurate side information is generated, the better performance of distributed video coding scheme is achieved. In the proposed algorithm, a distributed video coding scheme is applied to multi-view video coding based on depth map. Side information is also generated from images of adjacent views through 3D warping by using a depth map and is also combined with MCTI(motion compensated temporal interpolation) which uses images on a temporal axis, and 3D warping. Experimental results show that side information generated by using the proposed algorithm has 0.97dB better average PSNR compared with using MCTI and 3D warping separated. In addition, 8.01% of average bit-rate has been decreased while the same PSNR in R-D curves is kept.

3D Printing Based Patient-specific Orbital Implant Design and Production by Using A Depth Image (깊이 영상을 이용한 3D 프린팅 기반 환자 맞춤형 안와 임플란트의 설계 및 제작)

  • Seo, Udeok;Kim, Ku-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.903-914
    • /
    • 2020
  • In this paper, we present a novel algorithm to generate a 3D model of patient-specific orbital implant, which is finally produced by the 3D printer. Given CT (computed tomography) scan data of the defective orbital wall or floor, we compose the depth image of the defect site by using the depth buffering, which is a computer graphics technology. From the depth image, we compute the 3D surface which fills the broken part by interpolating the points around the broken part. By thickening the 3D surface, we get the 3D volume mesh of the orbital implant. Our algorithm generates the patient-specific orbital implant whose shape is accurately coincident to the broken part of the orbit. It provides the significant time efficiency for manufacturing the implant with supporting high user convenience.

Depth Interpolation Method using Random Walk Probability Model (랜덤워크 확률 모델을 이용한 깊이 영상 보간 방법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.738-743
    • /
    • 2011
  • For the high quality 3-D broadcasting, depth maps are important data. Although commercially available depth cameras capture high-accuracy depth maps in real time, their resolutions are much smaller than those of the corresponding color images due to technical limitations. In this paper, we propose the depth map up-sampling method using a high-resolution color image and a low-resolution depth map. We define a random walk probability model in an operation unit which has nearest seed pixels. The proposed method is appropriate to match boundaries between the color image and the depth map. Experimental results show that our method enhances the depth map resolution successfully.

Design and Implementation of High-Resolution Integral Imaging Display System using Expanded Depth Image

  • Song, Min-Ho;Lim, Byung-Muk;Ryu, Ga-A;Ha, Jong-Sung;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2018
  • For 3D display applications, auto-stereoscopic display methods that can provide 3D images without glasses have been actively developed. This paper is concerned with developing a display system for elemental images of real space using integral imaging. Unlike the conventional method, which reduces a color image to the level as much as a generated depth image does, we have minimized original color image data loss by generating an enlarged depth image with interpolation methods. Our method was efficiently implemented by applying a GPU parallel processing technique with OpenCL to rapidly generate a large amount of elemental image data. We also obtained experimental results for displaying higher quality integral imaging rather than one generated by previous methods.

A Study on the Fuzzy-PID Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 퍼지-PID 심도 제어에 관한 연구)

  • 김현식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.71-80
    • /
    • 2000
  • In Underwater Flight Vehicle depth control system, the followings must be required. Firstly, It need robust depth control performance which can get over parameter variation, modeling error and disturbance. Secondly, It need no oveshoot phenomenon to avoid colliding with ground surface and obstables. Thirdly, It need continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, It need effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose the Fuzzy-PID depth controller with the control parameter interpolators. Simulation results show the proposed control scheme has robust and accurate performance with continuous control input.

  • PDF

Database of Navigational Environment Parameters (Water Depth, Sediment Type and Marine Managed Areas) to Support Ships in an Emergency

  • Kim, Tae-Ho;Yang, Chan-Su
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.302-309
    • /
    • 2019
  • This study introduces the navigational environment database(DB) compiling water depth, sediment type and marine managed areas (MMAs) in coastal waters of South Korea. The water depth and sediment data were constructed by combining their sparse points of electronic navigation chart and survey data with high spatial resolution using the inverse distance weighting and natural neighbor interpolation method included in ArcGIS. The MMAs were integrated based on all shapefiles provided by several government agencies using ArcGIS because the areas should be used in an emergency case of ship. To test the validity of the constructed DB, we conducted a test application for grounding and anchoring zones using a ship accident case. The result revealed each area of possible grounding candidates and anchorages is calculated and displayed properly, excluding obstacle places.

Depth Upsampler Using Color and Depth Weight (색상정보와 깊이정보 가중치를 이용한 깊이영상 업샘플러)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.431-438
    • /
    • 2016
  • In this paper, we present an upsampling technique for depth map image using color and depth weights. First, we construct a high-resolution image using the bilinear interpolation technique. Next, we detect a common edge region using RGB color space, HSV color space, and depth image. If an interpolated pixel belongs to the common edge region, we calculate weighting values of color and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Depth map Resolution and Quality Enhancement based on Edge preserving interpolation (경계 보존 보간법을 이용한 깊이 영상의 해상도 및 품질 개선)

  • Kim, Ji-Hyun;Choi, Jin-Wook;Sohn, Kwang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.39-41
    • /
    • 2011
  • 본 논문에서는 깊이 영상의 해상도와 품질을 향상시키는 방법을 제안한다. 일반적으로 2D-plus-Depth 구조의 3D 콘텐츠에서는 깊이 영상의 품질이 매우 중요하다. 최근 들어 Time-of-Flight (TOF) 방식의 깊이 센서가 깊이 영상 획득에 많이 사용되고 있는데 TOF 깊이 센서가 제공하는 깊이 영상은 저해상도이기 때문에 고해상도 3D 콘텐츠를 제작하기 위해서는 깊이 영상의 해상도를 상향 변환하는 것이 필수적이다. 또한 고품질의 깊이 영상을 얻기 위해서는 물체 간의 경계를 정교하게 보존하는 것이 중요하다. 최근에는 깊이 영상의 해상도 상향 변환을 위해서 Joint Bilateral Upsampling(JBU) 방식이 많이 사용되고 있다. 본 논문은 깊이 영상의 해상도를 높임에 있어서 우선 보간법을 수행하여 영상의 상향 변환 시에 생긴 빈 홀들의 값을 채워준 후 Bilateral Filtering을 수행함으로써 성능을 높인다. 일반적으로 영상을 상향 변환을 할 때 다양한 방법들이 있는데 본 논문에서는 Nearest Neighborhood(NN), Gaussian과 경계 보존 보간법, 경계 보존 보간법과 Fast Curvature Based Interpolation(FCBI)를 결합한 보간법을 사용하였다. 실험 결과 제안 방법이 기존 방법보다 우수한 성능을 가짐을 보여준다. 또한 경계 보존 보간법과 FCBI를 결합한 보간법을 이용해서 상향 변환을 수행한 결과가 다른 보간법들에 의한 결과보다 우수하다는 점을 알 수 있다.

  • PDF