• Title/Summary/Keyword: Deposition time

Search Result 1,584, Processing Time 0.028 seconds

Indium Tin Oxide (ITO) Nano Thin Films Deposited by a Modulated Pulse Sputtering at Room Temperature (모듈레이티드 펄스 스퍼터링으로 상온 증착한 Indium-Tin-Oxide (ITO) 나노 박막)

  • You, Younggoon;Jeong, Jinyong;Joo, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • High power impulse magnetron sputtering (HIPIMS), also known as the technology is called peak power density in a short period, you can get high, so high ionization sputtering rate can make. Higher ionization of sputtered species to a variety of coating materials conventional in the field of improving the characteristics and self-assisted ion thin film deposition process, which contributes to a superior being. HIPIMS at the same power, but the deposition speed is slow in comparison with DC disadvantages. Since recently as a replacement for HIPIMS modulated pulse power (MPP) has been developed. This ionization rate of the sputtered species can increase the deposition rate is lowered and at the same time to overcome the problems to be reported. The differences between the MPP and the HIPIMS is a simple single pulse with a HIPIMS whereas, MPP is 3 ms in pulse length is adjustable, with the full set of multi-pulses within the pulse period and the pulse is applied can be micro advantages. In this experiment, $In_2O_3$ : $SnO_2$ composition ratio of 9 : 1 wt% target was used, Ar : $O_2$ flow rate ratio is 4.8 to 13.0% of the rate of deposition was carried out at room temperature. Ar 40 sccm and the flow rate of $O_2$ and then fixed 2 ~ 6 sccm was compared against that. The thickness of the thin film deposition is fixed at 60 nm, when the partial pressure of oxygen at 9.1%, the specific resistance value of $4.565{\times}10^{-4}{\Omega}cm$, transmittance 86.6%, mobility $32.29cm^2/Vs$ to obtain the value.

Studies on the Modeling of the Preparation of the C/SiC Composite for catalyst support by CVI (화학증기침투에 의한 촉매지지체용 C/SiC 복합체 제조에 관한 수치모사 연구)

  • 이성주;김미현;정귀영
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.33-41
    • /
    • 2000
  • In this research, the mathematical modeling of the formation of SiC layer on the activated carbon was studied to improve the durability and the oxidation resistance of catalyst supports. SiC layer on the activated carbon was formed by permeating SiC from dichlorodimethylsilane(DDS) into pores and depositing while the porous structure was kept. The best conditions of manufacturing the support were found by studying the characteristics of SiC/C which was modelled under various deposition conditions. Changes of the amount of deposition, the pore diameter, the surface area with time were obtained by simulating convection, diffusion and reaction in an isothermal reactor at a steady state. The uniform deposition in the pores of samples was obtained at a lower concentration of the reactant and a lower pressure. Additionally, it was observed that the pore diameter and the surface area have points of inflection at certain times of deposition, because deposition occurred on the inside surface of the pore at first and then on the outside surface of the particle.

  • PDF

Simulation of fluid flow and particle transport around two circular cylinders in tandem at low Reynolds numbers (낮은 레이놀즈 수에서 두 개의 원형 실린더 주위 유동 및 입자 거동 해석)

  • Khalifa, Diaelhag Aisa Hamid;Jeong, S.;Kim, D.
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.81-89
    • /
    • 2021
  • Understanding particle-laden flow around cylindrical bodies is essential for the better design of various applications such as filters. In this study, laminar flows around two tandem cylinders and the motions of particles in the flow are numerically investigated at low Reynolds numbers. We aim to reveal the effects of the spacing between cylinders, Reynolds number and particle Stokes number on the characteristics of particle trajectories. When the cylinders are placed close, the unsteady flow inside the inter-cylinder gap at Re = 100 shows a considerable modification. However, the steady recirculation flow in the wake at Re = 10 and 40 shows an insignificant change. The change in the flow structure leads to the variation of particle dispersion pattern, particularly of small Stokes number particles. However, the dispersion of particles with a large Stokes number is hardly affected by the flow structure. As a result, few particles are observed in the cylinder gap regardless of the cylinder spacing and the Reynolds number. The deposition efficiency of the upstream cylinder shows no difference from that of a single cylinder, increasing as the Stokes number increases. However, the deposition on the downstream cylinder is found only at Re = 100 with large spacing. At this time, the deposition efficiency is generally small compared to that of an upstream cylinder, and the deposition location is also changed with no deposited particles near the stagnation point.

Verification of Optical Wireless Communication Functionality in Micro-LED Display Light Source Integrated with Field-effect Transistor (전계형 스위칭 소자가 집적된 마이크로 LED 디스플레이 광원의 광 무선 통신 기능 검증)

  • Jong-In Kim;Hyun-Sun Park;Pan-Ki Min;Myung-Jin Go;Young-Woo Kim;Jung-Hyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 2023
  • In the past, display devices have undergone many changes, such as plasma TVs and LCDs, and have continued to develop. Recently, new display technologies, such as Organic Light Emitting Diode displays and Inorganic Light Emitting Diode displays, have been developed. Among them, Micro LED displays have the potential to improve performance more than LCDs and OLEDs, but a lot of effort and time are needed until the mass production technology (transfer and bonding) of Micro LED displays is developed. We have developed a new Micro LED display light source that can be produced using existing transfer and bonding process technologies to enable faster commercialization of Micro LED in the industry. This light source is TFT deposition on LED. TFT deposition on LED has the advantage of being able to produce displays using existing process technology, making early commercialization of display application products possible. In this study, we applied the Active Driving method to verify the performance of TFT deposition on LED as a display to determine its commercialization potential. Additionally, to facilitate faster application of Micro LED in the industry, we applied TFT deposition on LED to Optical Wireless Communication systems, which are widely used in application service areas such as safety/security and sensors, to verify its communication performance. The experimental results confirmed that TFT deposition on LED is not only capable of AM driving but can also be applied to OWC systems.

  • PDF

A study of characteristics of cumulative deposition of fallout Pu in environmental samples

  • Lee, Myung Ho;Song, Byoung Chul;Jee, Kwang Yong;Park, Yeong Jae;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2006
  • This paper describes the cumulative deposition of fallout Pu in soil and lichen at the present time and give the characteristics of fallout Pu deposits in the soil. In the soil of the forest, the accumulated depositions of $^{239,240}Pu$ were estimated to be in the range of 34.0 to $101.2Bq\;m^{-2}$ with an average value of $65.3{\pm}21.6Bq\;m^{-2}$. The average inventory of $^{239,240}Pu$ in the forest was calculated to be two times higher than that in the hill. Also, the deposited activities of $^{239,240}Pu$ in cultivated soil were significantly lower than those in the hill or forest. However, the cumulative depositions of fallout Pu in the volcanic ash soil on Cheju Island were much higher than those in the forest and hill soils. The measured activity concentrations of Pu isotopes in lichens and mosses showed large variations, due to characteristics of species and life span of lichen and moss colonies. From depth profiles, it was found that most of the fallout Pu has been accumulated in upper 10 cm layer of soil. Except for a few cases, the concentrations of $^{239,240}Pu$ in soil tended to decrease exponentially with increasing soil depth. Among parameters affecting the cumulative deposition of fallout Pu, organic substances and rainfall play an important role in the retention and relative mobility of fallout Pu in the soil. However, pH showed a weak correlation with the deposition of fallout Pu in the soil. From sequential leaching experiments, Pu was found to be associated predominantly with the "organic" and "oxy-hydroxy" fractions. Both the activity ratios of $^{238}Pu/^{239,240}Pu$ and $^{241}Pu/^{239,240}Pu$ in soils, lichens and mosses and the atomic ratios of $^{240}Pu/^{239}Pu$ in soils are close to those observed in the cumulative deposit global fallout from nuclear weapon testings. The results obtained from this research make it possible to interpret and predict the behavior of fallout Pu under natural conditions.

Testicular fat deposition attenuates reproductive performance via decreased follicle-stimulating hormone level and sperm meiosis and testosterone synthesis in mouse

  • Miao Du;Shikun Chen;Yang Chen;Xinxu Yuan;Huansheng Dong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.50-60
    • /
    • 2024
  • Objective: Testicular fat deposition has been reported to affect animal reproduction. However, the underlying mechanism remains poorly understood. The present study explored whether sperm meiosis and testosterone synthesis contribute to mouse testicular fat deposition-induced reproductive performance. Methods: High fat diet (HFD)-induced obesity CD1 mice (DIO) were used as a testicular fat deposition model. The serum hormone test was performed by agent kit. The quality of sperm was assessed using a Sperm Class Analyzer. Testicular tissue morphology was analyzed by histochemical methods. The expression of spermatocyte marker molecules was monitored by an immuno-fluorescence microscope during meiosis. Analysis of the synthesis of testosterone was performed by real-time polymerase chain reaction and reagent kit. Results: It was found that there was a significant increase in body weight among DIO mice, however, the food intake showed no difference compared to control mice fed a normal diet (CTR). The number of offspring in DIO mice decreased, but there was no significant difference from the CTR group. The levels of follicle-stimulating hormone were lower in DIO mice and their luteinizing hormone levels were similar. The results showed a remarkable decrease in sperm density and motility among DIO mice. We also found that fat accumulation affected the meiosis process, mainly reflected in the cross-exchange of homologous chromosomes. In addition, overweight increased fat deposition in the testis and reduced the expression of testosterone synthesis-related enzymes, thereby affecting the synthesis and secretion of testosterone by testicular Leydig cells. Conclusion: Fat accumulation in the testes causes testicular cell dysfunction, which affects testosterone hormone synthesis and ultimately affects sperm formation.

Water - Assisted Efficient Growth of Multi-walled Carbon Nanotubes by Thermal Chemical Vapor Deposition

  • Choi, In-Sung;Jeon, Hong-Jun;Kim, Young-Rae;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.418-418
    • /
    • 2009
  • Vertically aligned arrays of multi-walled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). We studied changes in growth by parameters of growth temperature, growth time, rates of gas and annealing time of catalyst. Also, We grew CNTs by adding a little amount of water vapor to enhance the growth of CNTs. $H_2$, Ar, and $C_2H_2$ were used as carrier gas and feedstock, respectively. Before growth, Fe served as catalyst, underneath which AI were coated as an underlayer and a diffusion barrier, respectively, on the Si substrate. The water vapor had a greater effect on the growth of CNTs on a smaller thickness of catalyst. When the water vapor was introduced, the growth of CNTs was enhanced than without water. CNTs grew 1.29 mm for 10 min long by adding the water vapor, while CNTs were 0.73 mm long without water vapor for the same period of time. CNTs grew up to 1.97 mm for 30 min prior to growth termination under adding water vapor. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy.

  • PDF

A numerical analysis of sediment transport in an estuary (河口隣接 內 의 堆積物 輸送에 대한 數値모델 解釋)

  • 강시완;카알지
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • The transport and fate of fine-grained, cohesive sediments in an estuary were investigated numerically. A numerical model of sediment entrainment, deposition, and transport has been developed by incorporating recent results of laboratory and field investigations. The time-dependent flow fields produced by fiver inflow and semi-diurnal tides, were calculated, and the corresponding distributions of suspended-sediment concentrations were obtained. The time-changes of sediment bed condition due to entrainment and deposition were obtained. The entrained sediments contribute initially to high sediment concentrations in the estuary basin. As the time passes, the suspended-sediment concentrations were much reduced by the seaward transport due to residual currents. The erosional and dipositional areas were appeared to be strongly dependent on the current-velocity fields and sediment properties of the estuary.

  • PDF

A Real-Time Diagnostic Study of MgO Thin Film Deposition Process by ICP Magnetron Sputtering Method (MgO 증착을 위한 유도결합 플라즈마 마그네트론 스퍼터링에서 실시간 공정 진단)

  • Joo Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.73-78
    • /
    • 2005
  • A real-time monitoring of ICP(inductively coupled plasma) assisted magnetron sputtering of MgO was carried out using a QMS(quadrupole mass spectrometer), an OES(optical emission spectrometer), and a digital oscilloscope with a high voltage probe and a current monitor. At the time of ICP ignition, the most distinct impurity was OH emission (308.9 nm) which was dissociated from water molecules. For reactive deposition oxygen was added to Ar and the OH emission intensity was reduced abruptly When the discharge voltage was regulated by a PID controller from 240V(metallic mode) to 120V(oxide mode), the emission intensity from Mg (285.2 nm) changed proportionally to the discharge voltage, but the intensity of Ar I(811.6 nm) was constant. At 100V of discharge voltage, Mg sputtering was almost stopped. Emissions from Ar I(420.1 nm) and Mg I were dropped down to 1/10, but Ar I(811.6 nm) didn't change. And the emission from atomic oxygen (O I, 777.3 nm) was increased to 10 times. These results are compatible with those from QMS study.

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF