• Title/Summary/Keyword: Deposition surface

Search Result 3,576, Processing Time 0.036 seconds

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Deposition Of $TiB_2$ Films by High Density Plasma Assisted Chemical Vapor Deposition (고밀도 플라즈마 화학 증착 장치를 이용한 $TiB_2$ 박막 제조)

  • Lee S. H.;Nam K. H.;Hong S. C.;Lee J. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.60-64
    • /
    • 2005
  • The ICP-CVD (inductively coupled plasma chemical vapor deposition) process was applied to the deposition of $TiB_2$ films. For plasma generation, 13.56 MHz r.f. power was supplied to 2-turn Cu coil placed inside chamber. And the gas mixture of $TiCl_4,\;BCl_3,\;H_2$ and Ar was used for $TiB_2$ deposition. $TiB_2$ films with high hardness (<40 GPa) were obtained at extremely low deposition temperature $(250^{\circ}C)$, and the films hardness increased with ICP power and gas flow ratio of $TiCl_4/BCl_3$. The film structure was changed from (100) preferred orientation to random orientation with increasing RF power. It is supposed that the enhanced hardness of films was caused by a strong Ti-B chemical bonding of stoichiometric $TiB_2$ films and film densification induced by high density plasma.

A Study on Particle Deposition of an Evaporating Colloidal Droplet (콜로이드 액적의 증발에 의한 입자 증착에 관한 연구)

  • Wee Sang-Kwon;Lee Jung-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.663-670
    • /
    • 2006
  • The presented study aims to investigate the colloidal droplet deposition caused by evaporation of the liquid. In the numerical analysis, the evaporation is carried out by using different evaporation function intended to obtain different shape of solute deposition. In the experiment, the colloidal droplets of different solvents are placed on a glass plate and the surface profiles are measured after drying the solvents of the droplets to investigate the effect of the solvent evaporation on the final deposition profile. Comparing the surface profiles obtained under different conditions, the optimum drying conditions of colloidal droplets are, determined to obtain uniform surface profiles. The numerical results showed that ring-shaped deposition of solute was formed at the edge of the droplet due to the coffee stain effect and the height of the ring was reduced at the lower evaporation rate. The experiments showed that the boiling point of a solvent was critical to the surface uniformity of the deposition profile and the mixture of solvents with different boiling points influenced the uniformity as well.

High rate deposition and mechanical properties of SiOx film on PET and PC polymers by PECVD with the dual frequencies UHF and HF at low temperature

  • Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.180-180
    • /
    • 2010
  • The design and implementation of high rate deposition process and anti-scratch property of silicon oxide film by PECVD with UHF power were investigated according to the effect of UHF input power with HF bias. New regime of high rate deposition of SiOx films by hybrid plasma process was investigated. The dissociation of OMCTS (C8H24Si4O4) precursor was controlled by plasma processes. SiOx films were deposited on polyethylene terephthalate (PET) and polycarbonate substrate by plasma enhanced chemical vapor deposition (PECVD) using OMCTS with oxygen carrier gas. As the input energy increased, the deposition rate of SiOx film increased. The plasma diagnostics were performed by optical emission spectrometry. The deposition rate was characterized by alpha-step. The mechanical properties of the coatings were examined by nano-indenter and pencil hardness, respectively. The deposition rate of the SiOx films could be controlled by the appropriate intensity of excited neutrals, ionized atoms and UHF input power with HF bias at room temperature, as well as the dissociation of OMCTS.

  • PDF

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Surface Modification Using CVD-SiC (화학증착 탄화규소에 의한 표면 개질)

  • 김한수;최두진;김동주
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.761-770
    • /
    • 1996
  • Silicon carbide (SiC) films were deposited by low pressure chemical vapor deposition (LPCVD) using MTS (CH3SICl3) in a hydrogen atmosphere onto graphite substrates. Depletion effects of reactants which usually occur in the hot wall horizaontal reactor were increased with deposition temperature and pressure. Below 50 torr of total pressure (111) plane was preferenctially grown irrespectrive of deposition temperature and deposition site. Over 50 torr of total pressure however (220) plane was preferentially deposited under 130$0^{\circ}C$ and at inlet site. The surface morphologies of SiC films were uniform at all deposition sites under low pressure but greatly changed with pressure. It shows that a facet structure which was formed above 125$0^{\circ}C$ played an important role in the changed of preferred orientation and surface roughness.

  • PDF

Studies on Electroless Nickel Plating on Alumina Ceramics(I) on Empirical Deposition Rate in Electroless Nickel Plating (알루미나 세라믹스 표면에 무전해 환원 니켈막의 형성에 관한 연구(I) 무전해 니켈도금의 실험적 석출속도에 관한 연구)

  • Kim, Yong-Dai;Lee, Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 1986
  • The electroless nickel plating on high alumina ceramics was performed in the bath containing nickel chloride, sodium hypophosphite and mono- or bi-carboxylic acid as a complexing agent in order to examine the empirical rate law as well as the effects of the complexing agent, plating temperature and pH on the rate of deposition. Adding the carboxylic acid to the plating bath, the rate of deposition was increased considerably, and each of the complexing agents showed a maximum deposition rate plateau around a particular concentration of the complexing agent. The rate of deposition was increased with increasing either temperature or pH, but microstructure of the surface became more rough. Furthermore, empirical rate law of the elecltroless nickel deposition on high alumina ceramics was discussed with the activation energy and other rate parameters calculated.

  • PDF

Numerical Simulation of Particle Deposition on a Wafer Surface (웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션)

  • 명현국;박은성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.

Density and Corrosion Property Improvement of Zn-Mg Coatings by Controlling the Substrate Temperature during the Deposition (증착 기판 온도 제어에 따른 Zn-Mg 박막의 치밀도 및 내식성 향상에 관한 연구)

  • Song, Myeon-Kyu;La, Joung-Hyun;Kim, Hoe-Kun;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.266-271
    • /
    • 2017
  • In this study, the corrosion resistance of Zn-3wt.%Mg coating was enhanced by controlling the density of coating. During the deposition the substrate temperature was controlled via an intermittent deposition process, resulting in the improvement of coating density. The maximum substrate temperature during this intermittent deposition process could be controlled from $200^{\circ}C$ to $80^{\circ}C$, depending upon the number of coating layer. The density of Zn-3 wt.%Mg coating increased from 76.1 % to 95.8 % as the substrate temperature was controlled. The salt spray test results revealed that the corrosion resistance of Zn-Mg coated steel could increase 3 times by increasing the density in coatings, while adhesion strength of coating was not changed significantly during 0-T bending test.

Surface Properties of Superconducting Thick Film with Suspension Solution added with Polymer (폴리머를 첨가한 현탁용매에 따른 초전도 후막의 표면특성)

  • 소대화;이영매;임병제;김태완;전용우;코로보바나탈리아
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.503-506
    • /
    • 2000
  • YBCO superconducting thick films were prepared on Ag wire by electrophoresis in acetone and ethanol with chemically modified suspension. The addition of organic compounds, such as PEG, EG into suspension solution for improving critical current density was investigated. Surface state, deposition condition, pore distribution and cracks were investigated by using SEM photographs. Controlling preparation conditions were studied for reducing these defects. As a results, in acetone solution, the surface crack of samples was decreased with increasing PEG. On the contrary, the surface crack of sample was increasing with increasing the amount of EG. In ethanol solution without I$_2$, which was generally used for an electrolyte, the deposition time was longer than this of acetone. For that reason the sample deposition in ethanol time was needed with enough stirring time for suspending YBCO powder and deposition time.

  • PDF