• Title/Summary/Keyword: Deposition flux

Search Result 248, Processing Time 0.031 seconds

Flux Pinning in $MgB_2$ Film with Columnar Grains (기둥형 결정립 구조를 지닌 $MgB_2$ 박막에서 자속고정 현상)

  • Kim, D.H.;Kim, H.Y.;Hwang, T.J.;Lee, S.H.;Seong, W.K.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.9 no.2
    • /
    • pp.173-176
    • /
    • 2008
  • [ $MgB_2$ ] films grown by hybrid physical chemical vapor deposition under appropriate growth conditions commonly exhibit columnar grain structure. The grain boundaries between adjacent columnar grains have been reported to be good flux pinning centers. In this work, we measured the angular dependence of critical current density ($J_c$) and observed the enhanced flux pinning when an external magnetic field was aligned parallel to the columnar direction. This $J_c$ was almost comparable to the $J_c$ for intrinsic pinning case up to 1 T at low temperatures, indicating that grain boundary pinning is very effective. At high fields, however, $J_c$ decreased rapidly resulting from the fact that the density of flux pinning centers provided by grain boundaries was outnumbered by the flux density.

  • PDF

Boiling Heat Transfer Coefficients of Nanofluids Using Carbon Nanotubes (탄소나노튜브를 적용한 나노유체의 비등 열전달계수)

  • Lee, Yo-Han;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.35-44
    • /
    • 2009
  • In this study, boiling heat transfer coefficients(HTCs) and critical heat flux(CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nano tubes(CNTs) dispersed at $60^{\circ}C$. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For dispersion of CNTs, polyvinyl pyrrolidone(PVP) is used in distilled water. Pool boiling HTCs are taken from $10kW/m^2$ to critical heat flux for all nanofluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 200% increase at volume concentration of 0.001% CNTs as compared to that of pure water. This is related to the change of surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of heat transfer surface are decreased due to this layer. The thin layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, maintains the nucleate boiling even at very high heat fluxes and reduces the formation of large vapor canopy at near CHF resulting in a significant increase in CHF.

EFFECTS OF AL2O3 NANOPARTICLES DEPOSITION ON CRITICAL HEAT FLUX OF R-123 IN FLOW BOILING HEAT TRANSFER

  • SEO, SEOK BIN;BANG, IN CHEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.398-406
    • /
    • 2015
  • In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and $Al_2O_3$ nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of $1,600kg/m^2s$, $1,800kg/m^2s$, $2,100kg/m^2s$, $2,400kg/m^2s$, and $2,600kg/m^2s$. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of $2,400kg/m^2s$ compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.

The Effects of Deposition Rate on the Physical Characteristics of OLEDs (유기발광 다이오드의 물성에 미치는 증착속도의 영향)

  • Lee, Young-Hwan;Cha, Ki-Ho;Kim, Weon-Jong;Lee, Jong-Yong;Kim, Gwi-Yeol;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.54-55
    • /
    • 2006
  • Organic light-emitting diodes(OLEOs) are attractive because of possible application in display with low operating voltage, low power consumption, self-emission and capability of multicolor emission by the selection of emissive material. We investigated the effects of deposition rate on the electrical characteristics, physical characteristics and optical characteristics of OLEOs in the ITO(indium-tin-oxide)/N.N'-diphenyl-N,N'-bis(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris(8-hydroxyquinoline)aluminum($Alq_3$)/Al device. We measured current density, luminous flux and luminance characteristics of devices with varying deposition rates of TPD and $Alq_3$. It has been found that optimal deposition rate of TPD and $Alq_3$ were respectively $1.5{\AA}/s$ from the device structure. An AFM measurement results, surface roughness of the deposited film was the lowest when deposition rate was $1.5{\AA}/s$.

  • PDF

Estimation of Dry Deposition in Urban Area, 2005 (2005년 도시지역의 건성침적량 산정에 관한 연구)

  • Shin S.A.;Han J.S.;Lee S.D.;Choi J.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.477-486
    • /
    • 2006
  • Dry deposition fluxes for $SO_2$, particulate sulfate, nitrate, ammonium and $HNO_3$ were estimated in urban area for the time period January$\sim$ October 2005. Fluxes were generated using atmospheric concentration data collected both in Acid Deposition and Air Quality Monitoring Networks, and deposition velocities computed by combining land-use data with meteorological information. The resulting annually averaged $SO_2$, $NO_3$, and aerosol deposition velocities were found to be 0.4 cm/s, 4.3 cm/s and 0.1 cm/s, respectively, and thus deposition rates were 4.4 mg/$m^2$. day for $SO_2$, and 5.4 mg/$m^2$ . day for $NHO_3$, and particulate sulfate, ammonium and nitrate recorded 1.0 mg/$m^2$ . day, 0.4 mg/$m^2$ . day and 0.4 mg/$m^2$ day, respectively. Maximum for in seasonal variation of monthly averaged deposition velocities occurred in summer in contrast to $HNO_3$ showing peak in spring. There was no significant variation for aerosol. The dry to total (wet and dry) deposition contributed about 40% for sulfur and 28% for nitrogen species in this study.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 2: Characteristics of Fog Water Chemistry and Fog Deposition in Northern Japan

  • Yamaguchi, Takashi;Noguchi, Izumi;Watanabe, Yoko;Katata, Genki;Sato, Haruna;Hara, Hiroshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • The fog water chemistry and deposition in northern Japan were investigated by fog water and throughfall measurements in 2010. Fog water was sampled weekly by an active-string fog sampler at Lake Mashu from May to November. Throughfall measurements were conducted using rain gauges under three deciduous trees along the somma of the lake from August to October. The mean fog deposition rate (flux) was calculated using throughfall data to estimate the total fog water deposition amount for the entire sampling period. $NH_4{^+}$ and $SO{_4}^{2-}$ were the most abundant cation and anion, respectively, in the fog water samples. A mean pH of 5.08 in the fog water, which is higher than those in rural areas in Japan, was observed. The [$NH_4{^+}$]/[$SO{_4}^{2-}$] equivalent ratio in fog water was larger than 1.0 throughout the study period, indicating that $NH_3$ gas was the primary neutralizing agent for fog water acidity. The mean rate and total amount of fog water deposition were estimated as 0.15 mm $h^{-1}$ and 164 mm, respectively. The amounts of nitrogen and sulfate deposition via fog water deposition were corresponded to those reported values of the annual deposition amounts via rainfall.

Study on Heat Transfer Performance Change According to Long-term Operation Using Carbon Nanotube and Graphene Nanofluid (탄소나노튜브 및 그래핀 나노유체 사용시 장기운전에 따른 열전달성능 변화에 대한 연구)

  • Kim, Young-Hun;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Critical heat flux refers to the sudden decrease in boiling heat transfer coefficient between a heated surface and fluid, which occurs when the phase of the fluid near the heated surface changes from liquid to vapor. For this reason, critical heat flux is an important factor for determining the maximum limit and safety of a boiling heat transfer. Recently, it is reported that the nanofluid is used as a working fluid for the critical heat flux enhancement. However, it could be occurred nano-flouling phenomena on the heat transfer surface due to nanoparticles deposition, when the nanofluid is applied in a heat transfer system. In this study, we experimentally carried out the effects of the nano-fouling phenomena in oxidized multi-wall carbon nanotube and oxidized graphene nanofluid systems. It was found that the boiling heat flux decreased by hourly 0.04 and $0.03kW/m^2$, also the boiling heat transfer coefficient decreased by hourly 11.56 and $10.72W/m^2{\cdot}K$, respectively, in the thermal fluid system using oxidized multi-wall carbon nanotube or oxidized graphene nanofluid.

Room temperature deposition of SiN thin film using pulsed $SiH_4-N_2$ plasma and the effect of duty ratio on refractive index (펄스드 $SiH_4-N_2$ 플라즈마를 이용한 SiN 박막의 상온 증착과 굴절률에의 Duty ratio 영향)

  • Kwon, Sang-Hee;Kim, Byung-Whan;Woo, Hyung-Su;Lee, Hyung-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.25-26
    • /
    • 2009
  • Pulsed-PECVD를 이용하여 상온에서 실리콘 나이트라이드(SiN) 박막을 증착하였다. 본 연구에서는, 60-100%의 duty ratio 변화에 따른 굴절률을 살펴보고, 굴절률에 대한 이온에너지의 영향을 분석했다. RF 소스파워는 900W로 고정하였고 $SiH_4-N_2$를 이용하였다. 이온에너지에 대한 정보는 non-invasive 이온 분석기를 이용하여 수집하였다. 측정된 이온에너지 변수는 high ion energy, low ion energy, high ion energy flux, low ion energy flux이며, 이를 이용해 또 다른 변수인 ion energy flux ratio를 계산하였다. Duty ratio의 감소에 따라 굴절률은 일반적으로 감소하였다. 또한 duty ratio의 감소에 따라 high ion energy는 증가하였다. 한편, 60-80%에서 굴절률은 이온에너지 flux의 비에 강한 의존성을 보였으며, 60%를 제외한 모든 duty ratio 구간에서 굴절률은 Nl에 강하게 영향을 알고 있는 것으로 유추되었다. 굴절률은 1.508와 1.714 사이에서 변화하였다.

  • PDF

A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD

  • Ranot, Mahipal;Duong, P.V.;Bhardwaj, A.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • $MgB_2$ thin films with superior superconducting properties are very promising for superconducting magnets, electronic devices and coated conductor electric power applications. A clear understanding of flux pinning mechanism in $MgB_2$ films could be a big aid in improving the performance of $MgB_2$ by the enhancement of $J_c$. The fabrication advancement and the understanding of flux pinning mechanism of $MgB_2$ thin and thick films fabricated by using hybrid physical-chemical vapor deposition (HPCVD) are reviewed. The distinct kind of $MgB_2$ films, such as single-crystal like $MgB_2$ thin films, $MgB_2$ epitaxial columnar thick films, and a-axis-oriented $MgB_2$ films are included for flux pinning mechanism investigation. Various attempts made by researchers to improve further the flux pinning property and $J_c$ performance by means of doping in $MgB_2$ thin films by using HPCVD are also summarized.

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF