• 제목/요약/키워드: Deposition efficiency

검색결과 767건 처리시간 0.028초

2단식 전기집진기의 집진판 블록간격 및 입자크기가 입자의 부착효율에 미치는 영향 (Effects of the Block Distance of Collecting Plate and Particle Size on the particle Deposition Efficiency in the Two-Stage Electrostatic Precipitator)

  • 박청연
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.165-178
    • /
    • 2000
  • In this study the effects of block distance have been investigated on the particle deposition efficiency in the collecting cell of two-stage electrostatic precipitator by numerical analysis. Particle trajectories have been changed by the electrostatic and inertial force of particle with the inlet velocity electrostatic number and particle diameter. The total deposition efficiency has a minimum value by the interaction between the effect of particle inertial force and electrostatic force in the collecting cell. The increase of block distance makes the total deposition efficiency decrease under the range of the particle size which has the minimum deposition efficiency. However beyond the range of particle size which has minimum deposition efficiency total deposition efficiency has no trend with the variation of block distance.

  • PDF

다꾸찌방법에 의한 Ni-5%Al 합금 분말의 플라즈마 용사코팅 조건의 최적화 (Optimization of the Plasma Spray Coating Parameters of Ni-5%Al Alloy Powder Using the Taguchi Experimental Method)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제20권5호
    • /
    • pp.120-126
    • /
    • 2002
  • Ni-5%Al alloy powder is widely used as the bond coating powder to improve the adhesive strength between the substrate and coating. The important properties in the bond coating are the deposition efficiency and surface roughness. In this study, it was tried to optimize the plasma spray parameters to maximize the deposition efficiency and surface roughness. In the first step, spray current and hydrogen gas flow rate were optimized in order to increase the deposition efficiency. In the next step, the seven plasma spray variables were selected and optimized to improve both the deposition efficiency and surface roughness using the Taguchi experimental method. By these optimization, the deposition efficiency was improved from about 10 % at the frist time to 51.2 % by the optimization of spray current and hydrogen gas flow rate and finally to 65.2 % by the Taguchi experimental method. The average surface roughness was increased from about $12.9\mu\textrm{m}$ to $15.4\mu\textrm{m}$.

외부증착공정(OVD)에서 열전달 및 입자부착에 관한 실험적 연구 (An experimental study of heat transfer and particle deposition during the outside vapor deposition process)

  • 김재윤;조재걸
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3063-3071
    • /
    • 1995
  • An experimental study has been carried out for the heat transfer and particle deposition during the Outside Vapor Deposition process. The surface temperatures of deposited layers, and the rates, efficiencies and porosities of particle deposition were measured. It is shown that the axial variation of the surface temperature can be assumed to be quasi-steady and that as the traversing speed of burner is increased, the deposition rate, efficiency and porosity increase due to the decreased surface temperature. As the flow rate of the chemicals is increased, both the thickness of deposition layers and the surface temperature increase. Deposition rate also increases, however, deposition efficiency decreases for tests done. Later passes in early deposition stage result in higher surface temperatures due to increased thickness of porous deposited layers, which cause the deposition rate, efficiency, and porosity to decrease.

저출력 펄스형 Nd:YAG 레이저를 사용한 클래딩에서 클래딩 변수들이 용착효율에 미치는 영향 분석 및 최적화 (Analysis and Optimization of the Cladding Parameters for Improving Deposition Efficiency in Cladding using a Low Power Pulsed Nd:YAG Laser)

  • 이형근
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.49-57
    • /
    • 2007
  • The optimization of the cladding parameters was studied to maximize the deposition efficiency in the laser cladding using a low power pulsed Nd:YAG laser. STS304 stainless steel plate and Co alloy powder were used as a substrate and powder for cladding, respectively. The six cladding parameters were selected through preliminary experiments and their effects on the deposition efficiency were analyzed statistically. Experiments were designed and carried out using the Taguchi experimental method using a L18 orthogonal array. It was found from the results of analysis of variance(ANOVA) that the powder feed position and powder feed angle had the most significant effects on the deposition efficiency, but the powder feed rate and laser focal position had nearly no effects. The deposition efficiency could be maximized at 0mm of the powder feed position and 50o of the powder feed angle in the experimental range. From this experimental analysis, a new laser cladding head with 20o of the powder feed angle was designed and manufactured. With a new laser cladding head, the highest deposition efficiency of 12.2% could be obtained.

레이저 메탈 디포지션 변수에 의한 표면경도 특성 분석 (Surface Hardness as a Function of Laser Metal Deposition Parameters)

  • 김원혁;정병훈;박인덕;오명환;최성원;강대민
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.272-279
    • /
    • 2015
  • The characteristics of the laser metal deposition parameters were studied to enhance the deposition efficiency using a diode pumped disk laser. STD61 hot tool steel plate and Fe based AISI M2 alloy were used as a substrate and powder for the laser metal deposition, respectively. Among the laser metal deposition parameters the laser power, track pitch and powder feed rate were used to estimate the deposition efficiency. From the experimental results, the deposition efficiency was shown to be excellent when 1.8kW laser power 500um track pitch and 10g/min of the powder feed rate were used. For this optimal condition the average hardness of the deposition track was approximately 830HV, and this value is 30~50% better than the hardness of the commercially produced tool steel after heat treatment.

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar;Mustafa, Chand Mohammad;Islam, Md Mayeedul
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.197-205
    • /
    • 2017
  • Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.

도핑 공정에서의 Pre-deposition 온도 최적화를 이용한 Solar Cell 효율 개선 (Solar Cell Efficiency Improvement using a Pre-deposition Temperature Optimization in The Solar Cell Doping Process)

  • 최성진;유진수;유권종;한규민;권준영;이희덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.244-244
    • /
    • 2010
  • Doping process of crystalline silicon solar cell process is very important which is as influential on efficiency of solar. Doping process consists of pre -deposition and diffusion. Each of these processes is important in the process temperature and process time. Through these process conditions variable, p-n junction depth can be controled to low and high. In this paper, we studied a optimized doping pre-deposition temperature for high solar cell efficiency. Using a $200{\mu}m$ thickness multi-crystalline silicon wafer, fixed conditions are texture condition, sheet resistance($50\;{\Omega}/sq$), ARC thickness(80nm), metal formation condition and edge isolation condition. The three variable conditions of pre-deposition temperature are $790^{\circ}C$, $805^{\circ}C$ and $820^{\circ}C$. In the $790^{\circ}C$ pre-deposition temperature, we achieved a best solar cell efficiency of 16.2%. Through this experiment result, we find a high efficiency condition in a low pre-deposition temperature than the high pre-deposition temperature. We optimized a pre-deposition temperature for high solar cell efficiency.

  • PDF

Influence of LPPS Spraying Parameters on Deposition Efficiency of Zirconia Powder

  • Shi, Jian-Min;Hu, Zhong-Yin;Huang, Jing-Qi;Ding, Chuan-Xian
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.160-165
    • /
    • 1997
  • Yttria stabilized zirconia coating is an attractive material for several engineering applications. In order to produce coatings with consistent and reliable performance it is important to understand the influence of spraying parameters on the coating properties and optimize the spraying parameters. In this paper the low pressure plasma spray(LPPS) deposition of as-received zirconia powder has been investigated using simple one-factor-at-a-time approach. The deposition efficiency was chosen to evaluate the melting characteristics of the as-received zirconia powder. The results obtained indicated that the deposition efficiency of zirconia powder is very sensitive to the spraying parameters such as plasma gas flow rate and ranges from 24% to 57% The microstructure and the phase composition of zirconia coating deposited with the different plasma spraying parameters were also examined by SEM and XRD respectively. The relationship between deposition efficiency and the microstructure of zirconia coating was discussed.

  • PDF

Crucible Boat 홀 크기와 정공 수송층 증착속도에 따른 유기밭광 다이오드의 전기적 특성 (Electrical Properties of OLEDs due to the Hole-size of Crucible Boat and Deposition Rate of Hole Transport Layer)

  • 김원종;신현택;신종열;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.74-80
    • /
    • 2009
  • In the structure of ITO/N,N'-diphenyl-N,N' bis (3-methylphenyl)-1,1'-biphenyl-4,4'-diamine(TPD)/tris (8-hydroxyquinoline)aluminum($Alq_3$)/Al device, we studied the efficiency improvement of organic light-emitting diodes due to variation of deposition rate of hole transport layer (TPD) materials using hole-size of crucible boat. The thickness of TPD and $Alq_3$ was manufactured 40 nm, 60 nm, respectively under a base pressure of $5{\times}10^{-6}$ Torr using a thermal evaporation. The $Alq_3$ used for an electron-transport and emissive layer were evaporated to be at a deposition rate of $2.5\;{\AA}/s$. When the deposition rate of TPD increased from 1.5 to $3.0\;{\AA}/s$, we studied the efficiency improvement of TPD using the hole-size of crucible is 1.0 mm. When the deposition rate of TPD is $2.5\;{\AA}/s$, we found that the average roughness is rather smoother, the luminous efficiency the external quantum efficiency is superior to the others. Compared to the two from the devices made with the deposition rate of TPD is $2.0\;{\AA}/s$ and $3.0\;{\AA}/s$, the external quantum efficiency was improved by four-times and two-times, respectively.

환상형원관을 사용하는 수정된 화학증착(MCVD)방법에서 내부 제트분사가 입자부착에 미치는 영향 (Effects of Inner Jet Injection on Particle Deposition in the Annular Modified Chemical Vapor Deposition Process Using Concentric Tubes)

  • 최만수;박경순
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.212-222
    • /
    • 1994
  • In the annular Modified Chemical Vapor Deposition process using two concentric tubes, the inner tube is heated to maintain high temperature gradients to have high thermophoretic force which can increase particle deposition efficiency. However, higher axial velocity in a narrow gap between inner and outer tubes can result in a longer tapered entry length. In the present paper, a new concept using an annular jet from the inner tube is presented and shown to significantly reduce the tapered entry length with maintaining high efficiency. Effects of a jet injection on heat transfer, fluid flow and particle deposition have been studied. Of particular interests are the effects of jet velocity, jet location and temperature on the deposition efficiency and tapered length . Torch heating effects from both the previous and present passes are included and the effect of surface radiation between inner and outer tubes is also considered.