• 제목/요약/키워드: Deposition during growth

검색결과 291건 처리시간 0.035초

Direct Growth of Graphene on Boron Nitride/Copper by Chemical Vapor Deposition

  • Jin, Xiaozhan;Park, J.;Kim, W.;Hwang, Chanyong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.590-590
    • /
    • 2013
  • Direct growth of graphene using CVD method has been done on CVD grown boron nitride substrate. From the SEM image, we have shown that the size of grain of graphene could be clearly controlled by varying the amount of injected hydrocarbon. To convince the existence of graphene on boron nitride, XPS and Raman has been checked. Both B1s and N1s peaks in XPS spectra and the Raman peak around 1,370 $cm^{-1}$ demonstrated that boron nitride did remain after high temperature treatment during the graphene growth process. And along the graphene grain boundary, the Raman fingerprint of graphene was neatly appeared.

  • PDF

Real-time Spectroscopic Ellipsometry studies of the Effect of Preparation Parameters on the Coalescence Characteristics of Microwave-PECVD Diamond Films

  • Hong, Byungyou
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 한국결정성장학회 1998년도 PROCEEDINGS OF THE 14TH KACG TECHNICAL MEETING AND THE 5TH KOREA-JAPAN EMGS (ELECTRONIC MATERIALS GROWTH SYMPOSIUM)
    • /
    • pp.49-54
    • /
    • 1998
  • The growth of diamond films in plasma enhanced chemical vapor deposition(PECVD) processes requires high substrate temperatures and gas pressures, as well as high-power excitation of the gas source. Thus determining the substrate temperature in this severe environment is a challenge. The issue is a critical one since substrate temperature is a key parameter for understanding and optimizing diamond film growth. The precise Si substrate temperature calibration based on rapid-scanning spectroscopic ellipsometry have been developed and utilized. Using the true temperature of the top 200 ${\AA}$ of the Si substrate under diamond growth conditions, real time spectroellipsometry (RTSE) has been performed during the nucleation and growth of nanocrystallind thin films prepared by PECVD. RTSE shows that a significant volume fraction of nondiamond(or{{{{ {sp }^{2 } -bonded}}}}) carbon forms during thin film coalescence and is trapped near the substrate interface between ∼300 ${\AA}$ diamond nuclei.

  • PDF

Physical properties of TiN thin films deposited by grid-assisted magnetron sputtering

  • Jung, Min J.;Nam, Kyung-H.;Han, Jeon-G.;Shaginyan, Leonid-R.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2002년도 춘계학술발표회 초록집
    • /
    • pp.46-46
    • /
    • 2002
  • It is well known that thin film growth and surface morphology can be substantially modified by ion-bombardment during the deposition. This is particularly important in case of thin-film deposition at low temperatures where the film growth occurs under highly nonequilibrium conditions. An attractive way to promote crystalline growth and surface morphology is deposition of additional energy in to the surface of the growing film by bombardment with hyperthermal particles. We were deposited crystalline Ti and TiN thin films on Si substrate by magnetron sputtering method with grid. Its thin films were highly smoothed and dense as increasing grid bias. In order explore the benefits of a bombardment of the growing film with high energetic particles. Ti and TiN films were deposited on Si substrates by an unbalanced magnetron sputter source with attached grid assembly for energetic ion extraction. Also, we have studied the variation of the plasma states by Langmuir probe and Optical Emission Spectroscopy (OES). The epitaxial orientation. microstructual characteristics. electrical and surface properties of the films were analyzed by XRD. SEM. Four point probe and AFM.

  • PDF

Effect of the Ni Catalyst Size and Shape on the Variation of the Geometries for the As-grown Carbon Coils

  • Jang, Chang-Young;Kim, Sung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • 제46권4호
    • /
    • pp.175-180
    • /
    • 2013
  • Carbon nanofilaments (CNFs) could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. Ni powders were used as the catalyst for the formation of the CNFs. During the initial deposition stage, the initiation of the CNFs on the Ni catalyst was investigated. The geometries of the as-grown CNFs on Ni catalyst were strongly dependent on the size and/or the shape of Ni catalyst. Small size catalyst (<150 nm in diameter) gives rise to the unidirectional growth of the CNFs. On the other hand, large size catalyst (150~500 nm), the bidirectional growth of the CNFs could be observed. Particularly, the well faceted parallelogram-shaped Ni catalyst could give rise to the bidirectional growth of the CNFs having the symmetrically opposite direction. Eventually, these bidirectional growths of CNFs were understood to form the well-developed carbon microcoils (CMCs). Based on these results, the optimal shape and the size of the Ni catalyst to form the CMCs were discussed.

3C-SiC/Si 에피층 성장과 Ga 불순물 효과

  • 박국상;김광철;김선중;서영훈;남기석;이형재;나훈균;김정윤;이기암
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 13th KACG Technical Meeting `97 Industrial Crystallization Symposium(ICS)-Doosan Resort, Chunchon, October 30-31, 1997
    • /
    • pp.141-144
    • /
    • 1997
  • High quality 3C-SiC epilayer was grown on Si(111) at 125$0^{\circ}C$ using chemical vapor deposition(CVD) technique by pyrolyzing tetramethylsilane(TMS). 3C-SiC epilayer was doped by tetramethylgallium(TMGa) during the CVD growth. The crystallinity of 3C-SiC was significantly enhanced by doping the gallium impurity.

  • PDF

Nitrogen Effect on Vertically Aligned CNT Growth (수직배향 CNT의 성장에 미치는 질소의 영향)

  • 김태영;오규환;정민재;이승철;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • 제12권1호
    • /
    • pp.70-77
    • /
    • 2003
  • It is well Down that the growth of carbon nanotubes (CNTs) by chemical vapor deposition (CVD) using a transition metal catalyst is greatly enhanced in a nitrogen environment. We show here that the enhanced growth is closely related to the activated nitrogen and it's incorporation into the CNT wall and cap during growth. This behavior is consistent with theoretical calculations of CNx thin films, showing that nitrogen incorporation to the graphitic basal plane reduces the elastic strain energy for curving the graphitic layer. Enhanced CNT growth by nitrogen incorporation is thus due to a decrease in the activation energies required for nucleation and growth of the tubular graphitic layer.

Behavior of catalyst layer during the growth of carbon nanotubes for field emission application by thermal chemical vapor deposition

  • Park, Jong-Bong;Kim, Do-Jin;Choi, Sung-Yool;Ahn, Seong-Deok;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.694-696
    • /
    • 2002
  • Growth behaviors of carbon nanotubes (CNTs) are studied in terms of catalyst by using scanning electron microscopy and transmission electron microscope (TEM). Catalyst films deposited on various substrates are agglomerated into nano-islands during the heat-up to the growth temperature. In particular, we focus on the direct investigation of the microstructures of the CNTs and the interface of CNTs-catalyst-substrate using cross-sectional TEM. We investigate relationship to the subsequent CNTs growth on each nucleation site. The growth of CNTs depends on the catalyst itself but not the silicide formation between the catalyst and the substrate.

  • PDF

Analysis of Radiative Heat Transfer and Mass Transfer During Multi-Wafer Low Pressure Chemical Vapor Deposition Process (저압 증기 화합물 증착 공정에서 복사열전달 및 물질전달 해석)

  • Park, Kyoung-Soon;Choi, Man-Soo;Cho, Hyoung-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제24권1호
    • /
    • pp.9-20
    • /
    • 2000
  • An analysis of heat and mass transfer has been carried out for multi-wafer Low Pressure Chemical Vapor Deposition (LPCVD). Surface radiation analysis considering specular radiation among wafers, heaters, quartz tube and side plates of the reactor has been done to determine temperature distributions of 150 wafers in two dimensions. Velocity, temperature and concentration fields of chemical gases flowing in a reactor with multi-wafers have been then determined, which determines Si deposition growth rate and uniformity on wafers using two different surface reaction models. The calculation results of temperatures and Si deposition have been compared and found to be in a reasonable agreement with the previous experiments.

Epitaxial Growth of BSCCO Type Structure in Atomic Layer by Layer Deposition

  • Yang, Sung-Ho;Park, Yong-Pil;Jang, Kyung-Uk;Oh, Geum-Gon;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2000
  • Si$_2$Sr$_2$CuO$\sub$x/(Bi(2201)) thin films are fabricated by atomic layer by layer deposition using ion beam sputtering(IBS) method. During the deposition, 10 %-ozone/oxygen mixture gas of typical 5.0 ${\times}$ 10$\^$-5/ Torr is applied with ultraviolet light irradiation for oxidation. XRD and RHEED investigations reveal out that a buffer layer with some different compositions is formed at the early deposition stage of less than 10 units cell and then c-axis oriented Bi(2201) is grown.

  • PDF

Thin Film Morphology Pentacene Thin Film Using Low-Pressure Gas Assisted Organic Vapor Deposition(LP-GAOVD)

  • Ahn, Seong-Deok;Kang, Seung-Youl;Lee, Yong-Eui;Kim, Chul-Am;Joung, Meyong-Ju;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.998-1000
    • /
    • 2003
  • We have investigated thin film morphology of pentacene thin films by the process of low-pressure gas assisted organic vapor deposition (LP-GAOVD). Source temperature, inert gas flow rate, substrate temperature and deposition pressure during film deposition is used to vary the growth rate, thin film morphology and the crystalline grain size of pentacene thin films. The electrical properties of pentacene thin films for applications in organic thin film transistor and electrophoretic displays will be discussed.

  • PDF