• Title/Summary/Keyword: Deposition and Machining

Search Result 45, Processing Time 0.027 seconds

Fabrication of EDM Electrodes by Localized Electrochemical Deposition

  • Habib, Mohammad Ahsan;Gan, Sze Wei;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • The fabrication of complex three-dimensional electrodes for micro electrical discharge machining (micro-EDM) is an important issue in the field of micromachining Localized electrochemical deposition (LECD) is a simple and inexpensive technique for fabricating micro-EDM electrodes. This study presents a new process for manufacturing electrodes with complex cross-sections using masks of different shapes, In this process, a non-conductive mask is placed between an anode and cathode that are immersed in a plating solution of acidified copper sulfate. The LECD is achieved by applying a pulsed voltage between the anode and cathode, which are separated by a small distance. In this setup, the cathode is placed above the anode and the mask, so that the deposited electrode can be used directly for EDM without changing the tool orientation. We found that the microstructure of the deposited electrode is influenced by the concentration of the plating solution and organic additives. Moreover, the values of the voltage, frequency, and duty cycle of the pulsed input have significant effects on the microstructure of the fabricated electrode. Finally, the optimum values of the voltage, frequency, and duty cycle were determined for the most effective fabrication of complex-shaped electrodes.

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

Study on the Improvement of wear properties of Automobile elements in Titanium alloy Coated (티타늄합금 코팅된 자동차 부품의 마모특성 향상에 관한 연구)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • In this paper, The process of thin-film coating technology was applied to improve adhesion of the hardness thin film and nitride layer. This thin-film coating technology have formed composite thin-film to gain hardness and toughness used in press mold. The thin-film coating manufacturing technology increased vacuum present in the vacuum chamber and improved the throw ratio of the gun power using physical vapor deposition coating technology. Ti alloys target improved performance and surface material through the development of a composite film coating technology for various precision machining parts.

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Rapid Prototyping and Testing of 3D Micro Rockets Using Mechanical Micro Machining

  • Chu Won-Shik;Beak Chang-Il;Ahn Sung-Hoon;Cho Tae-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.85-93
    • /
    • 2006
  • The trend of miniaturization has been applied to the research of rockets to develop prototypes of micro rockets. In this paper, the development of a web-integrated prototyping system for three-dimensional micro rockets, and the results of combustion tests are discussed. The body of rocket was made of 6061 aluminum cylinder by lathe process. The three-dimensional micro nozzles were fabricated on the same aluminum by using micro endmills with ${\phi}100{\mu}m{sim}{\phi}500{\mu}m$ diameter. Two types of micro nozzle were fabricated and compared for performance. The total mass of the rockets was 7.32 g and that of propellant (gun powder) was 0.65 g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle from the ground resulted in $46\;m{\sim}53\;m$ of horizontal flight distance. In addition, ABS housing for the micro machined rocket was fabricated using Fused Deposition Modeling (FDM). A web-based design, fabrication, and test system for micro nozzles was proposed to integrate the distributed hardware resources. Test data was sent to the designer via the same web server for the faster feedback to the rocket designer.

Development of Hybrid RP System and Fabrication of Nano Composite parts (하이브리드 쾌속 조형 시스템의 개발 및 나노 복합재 부품 제작)

  • Kim S.G.;Jung W.K.;Chu W.S.;Kim H.J.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.220-223
    • /
    • 2005
  • The rapid prototyping (RP) technology has been advanced for various applications such as verification of design, functional test. However, many RP machines still have low accuracy and limitation of applications for various materials. In this research, a hybrid RP system was developed to improve precision of micro parts. This hybrid system consists of deposition and material removal process by mechanical micro machining to fabricate nano composites using photo-curable polymer resin with various nano particles. In this work, using hybrid RP process with Multi-Walled Carbon Nano Tube (MWCNT) and hydroxyapatite, micro parts were fabricated. The precision of parts was evaluated based on the original CAD design, and to see the effect of nano particles on mechanical properties, tensile strength was measured. From the results of experiments, it was confirmed that the part made by hybrid process had higher precision, and the addition of nano particles improved mechanical properties.

  • PDF

Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition (직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과)

  • Oh, W.J.;Son, Y.;Son, J.Y.;Shin, G.W.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

Measuring Method of Planar Displacement Referring to The Double Linear Patterns (이중화된 패턴을 참조하는 평면 변위 측정 방법)

  • Park, Sung Jun;Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4405-4410
    • /
    • 2015
  • Two-dimensional displacements are obtained from the sandwiched patterns, which superpose two linearly-periodic patterns orthogonally, respectively. The transparent top pattern is identified by deflection of the laser beam due to a difference of refractivity and the opaque bottom pattern is identified by deviation of the beam intensity due to a difference of reflectance. In the sample setup, the top pattern made up of build-up film is manufactured by UV laser machining and the bottom pattern is manufactured by ultra-precision trench machining and deposition for aluminum plate. The proposed decoding method is verified experimentally using the $10{\mu}m$ equally spaced sample patterns and the devised optical system. The Korea Academia-Industrial cooperation Society.

Fabrication and Evaluation of Machinability of Diamond Particle Electroplating Tool for Cover-Glass Edge Machining (커버 글래스 엣지 가공을 위한 다이아몬드 입자 전착 공구 제작 및 가공성 평가)

  • Kim, Byung-Chan;Yoon, Ho-Sub;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In these days, due to generalization of using smart mobile phone and wearable device such as smart watch, demand of Cover-glass and touch screen panel for protecting display increases. With increasing the demand of Cover-glass, slimming technique is promising for weight lightening, zero bezel. Cover-glass produced by this technique is required to decreasing thickness with increase strength. In the Cover-glass manufacturing process, mechanical processing and chemical processing has improve in the strength. Generally, Diamond electrodeposition wheel is used in mechanical process. Reinforced glass with the characteristics of the brittle and high hardness was manufactured by using a diamond electrodeposition wheel. At this time, Because of surface of the tool present non-uniform distribution of diamond particle, it has generate Loading of wheel and it has been decrease life of grinding tool, efficiency of grinding, quality and shape accuracy of workpiece. Thus Research is needed to controling particle distribution of diamond electrodeposition wheel uniformly. And it is necessary to study micro hole machining such as proximity senser hole, speaker hole positioned Cover-glass. Reinforced glass with the characteristics of the brittle and high hardness is difficult to machining. Processing of reinforced glass have generated wear of tool, micro cracks. Also, it is decreasing shape accuracy. In this paper, We conducted a study on how to control particle distribution uniformly about the diamond tool manufactured using elecetodeposition processing. It analyzed the factors that affect the arrangement of the particles in the electrodeposition process by design of experiment. And There is produced the grinding tool, which derives an optimum deposition conditions, for processing Cover-glass edge and the machinability was evaluated.