• Title/Summary/Keyword: Deposition Path

Search Result 69, Processing Time 0.124 seconds

이온 빔 스퍼터링 방법으로 제작한 Mo 박막의 특성조사

  • Jo, Sang-Hyeon;Kim, Hyo-Jin;Yun, Yeong-Mok;Lee, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.304-304
    • /
    • 2012
  • CIGS(CuInGaSe2) 태양전지의 후면전극(Back contact)으로 널리 사용되는 Mo 박막은 낮은 면저항, 높은 반사율, 광흡수층 Na-path 제공 등의 조건이 요구된다. 일반적으로 Mo 박막 제작은 DC 마그네트론 스퍼터링 방법이 가장 널리 사용되며, 제작조건에 따라 태양전지 효율에 강한 영향을 미치는 것으로 보고되고 있다. 본 연구에서는 DC 마그네트론 스퍼터링 시 기판에 이온빔(Ion-beam)을 동시 조사하는 이온 빔 스퍼터링 증착(Ion-beam sputter deposition)법으로 Mo 박막을 제작하였다. 제작된 박막의 전기적 및 광학적 특성은 4-point probe, UV-Vis-NIR spectrometer로 각각 조사하였으며 Na-path 제어를 위한 구조적 특성은 XRD, FE-SEM으로 분석하였다. 분석결과에 따르면 기존 DC 마그네트론 스퍼터링 방법보다 상대적으로 더 치밀한 구조와 높은 반사율을 가지는 박막이 제작됨을 알 수 있었다. Mo 박막의 최적조건은 DC power 300 W, Ion-gun power 50 W, Ar flow rate 20 sccm 였다.

  • PDF

Studies on the Conducion path and Conduction Mechanism in undeped polycrystalline Diamond Film (도핑되지 않은 다이아몬드 박막의 전기전도 경로와 전도기구 연구)

  • Lee, Bum-Joo;Ahn, Byung-Tae;Lee, Jae-Kab;Baek, Young-Joon
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.593-600
    • /
    • 2000
  • This paper investigated the conduction path and conduction mechanism in undoped polycrystalline diamond thin films deposited by microwave chemical vapor deposition. The resistances measured by ac impedance spectroscopy with different directions can not be explained by the previously-known surface conduction model. The electrodeposition of Cu and electroetching of Ag experiments showed that the conduction path is the grain boundaries within the diamond films. The electodeposition of Cu with an insulating surface layer further proved that the main conduction path in polycrystalline films in the grain boundaries. The film with high electrical conductivity has low activation energy of 45meV and higher dangling bond density. By considering the results and surface C chemical bonds, the H-C-C-H bonds at surface and in grain boundaries might be the origin of high conductivity in undoped diamond films.

  • PDF

Properties of TiO2 Thin Films Deposited on PET Substrate for High Energy Density Capacitor (고에너지밀도 캐패시터를 위해 PET 기판에 증착한 TiO2 박막의 특성)

  • Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.409-415
    • /
    • 2012
  • $TiO_2$ thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature. Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. The effects of deposition pressure on the crystallization and electrical properties of $TiO_2$ films were investigated. The crystal structure of $TiO_2$ films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphous structure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing deposition pressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of chemically stable $TiO_2$ films. The dielectric constant of $TiO_2$ films was significantly changed with deposition pressure. $TiO_2$ films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant and dissipation factor of films deposited at 70 mTorr were found to be 100~120 and 0.83 at 1 kHz, respectively. The temperature dependence of the capacitance of $TiO_2$ films showed the properties of class I ceramic capacitors. $TiO_2$ films deposited at 10~30 mTorr showed dielectric breakdown at applied voltage of 7 V. However, the films of 500~300 nm thickness deposited at 50 and 70 mTorr showed a leakage current of ${\sim}10^{-8}{\sim}10^{-9}$ A at 100 V.

Hybrid 3D Printing and Casting Manufacturing Process for Fabrication of Smart Soft Composite Actuators (지능형 연성 복합재 구동기 제작을 위한 3D 프린팅-캐스팅 복합 공정)

  • Kim, Min-Soo;Song, Sung-Hyuk;Kim, Hyung-Il;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-83
    • /
    • 2016
  • Intricate deflection requires many conventional actuators (motors, pistons etc.), which can be financially and spatially wasteful. Novel smart soft composite (SSC) actuators have been suggested, but fabrication complexity restricts their widespread use as general-purpose actuators. In this study, a hybrid manufacturing process comprising 3-D printing and casting was developed for automated fabrication of SSC actuators with $200{\mu}m$ precision, using a 3-D printer (3DISON, ROKIT), a simple polymer mixer, and a compressor controller. A method to improve precision is suggested, and the design compensates for deposition and backlash errors (maximum, $170{\mu}m$). A suitable flow rate and tool path are suggested for the polymer casting process. The equipment and process costs proposed here are lower than those of existing 3D printers for a multi-material deposition system and the technique has $200{\mu}m$ precision, which is suitable for fabrication of SSC actuators.

Nonhomogeneity of the Electrical Properties with Deposition Position in an ITO Thin Film Deposited under a Given R.F. Magnetron Sputtering Condition (동일 증착 조건의 스퍼터링에 의해서 제작된 Indium Tin 산화물 박막의 증착위치에 따른 전기적 특성의 불균질성)

  • 유동주;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.973-979
    • /
    • 2001
  • Tin-doped indium oxide (ITO) thin films were deposited using r.f. magnetron reactive sputtering and the electrical properties, such as the resistivity, carrier concentration and mobility, were investigated as a function of the sample position under a given magnetron sputtering condition. The nonhomogeneity of the electrical properties with the sample position was observed under a given magnetron sputtering condition. The resistivity of ITO thin film on the substrate which corresponded to the center of the target had a minimum value, 2∼4$\times$10$\^$-4/$\Omega$$.$cm, and it increased symmetrically when the substrate deviated from the center. The density measurement result also showed that ITO thin film deposited at the center has a maximum density of 7.0g/cm$^3$, which was a relative density of about 97%, and the density decreased symmetrically as the substrate deviated from the center. The nonhomogeneity of electrical properties with the deposition position could be explained with the incidence angle of the source beam alpha, which is related with an atomic self-shadowing effect. It was confirmed experimentally that the density in film affect both the carrier mobility and the conductivity. In the case where the density of ITO thin film is 7.0g/cm$^3$, the magnitude of the mean free path was identical with that of the grain size(the diameter of column). However, in the other cases, the mean free path was smaller than the grain size. These results showed that the scattering of the free electrons at the grain boundary is the major factor for the electrical conduction in ITO thin films having a high density, and there exists other scattering sources such as vacancies, holes, or pores in ITO thin films having a low density.ing a low density.

  • PDF

Verification of Build Part and Tool Paths for Metal 3-D Printing Process (3차원 금속 프린팅 공정에서의 조형파트 진단 및 조형공구경로 검증)

  • Lee, Kyubok;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2017
  • Metal 3D printing, which is an additive metal manufacturing (AMM) process, enables the development of full-density metallic tools and parts using metal powders that are precisely delivered and controlled for deposition with no powder bed. However, some unknown geometric defects and irregular geometric features on an STL model can possibly result in incorrect metal part fabrication after the build. This study first proposes a methodical approach for verifying the build part, including the missing facet problems in an STL model, by defining some irregular features that possibly exist on the part. Second, 2D tool paths on each build layer were investigated for detecting any singular region inside the layer. The method was implemented for building two sample STL models using a direct energy deposition process, and finally, it was visually simulated for diagnosis.

A study on the deposition of DLC films by magnetron PECVD (Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구)

  • Kim, Soung-Young;Lee, Jai-Sung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

Numerical Calculation of the Deflected Path of Electrons through Water under External Magnetic Fields

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Shin, Kyo-Chul;Kim, Ki-Hwan;Kim, Jeung-Kee;Oh, Young-Kee;Ji, Young-Hoo;Lee, Jeong-Ok;Kim, Seung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.71-71
    • /
    • 2003
  • The study on magnetic field combined radiation therapy, as a new technique to modify the dose distributions using external magnetic field, has been investigated. The goal of the study is to develop the techniques for dose localization, as a particle beam, from the strong magnetic fields. In this study, in order to study the principle of dose deposition in external fields, as a basic approach, we have calculated approximately the paths of traveling electrons in water under external magnetic fields with numerical methods. The calculations are performed for a primary particle by cumulating the steps which are defined as small path lengths which energy loss can be ignored. In this calculation, the energy loss and direction change for a step was calculated by using total stopping power and Lorentz force equation respectively. We have examined the deflected paths of the electron through water as a function of external magnetic field and incident electron s energy. Since we did not take account of the multiple scattering effects for electrons through water, there are errors in this calculation. However, from the results we can explain the principle of dose variation and dose focusing for electron beams under strong magnetic fields in water.

  • PDF

A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

  • Sujatha Pavan Narayanam;Soubhadra Sen;Kalpana Kumari;Amit Kumar;Usha Pujala;V. Subramanian;S. Chandrasekharan;R. Preetha;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.132-140
    • /
    • 2024
  • In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10-15 kPa, 0.65-3.04 g/m3 and 30-90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.

Water Vapor Permeation Properties of Al2O3/TiO2 Passivation Layer Deposited by Atomic Layer Deposition (원자층 증착법을 이용한 Al2O3/TiO2 보호막의 수분 보호 특성)

  • Kwon, Tae-Suk;Moon, Yeon-Keon;Kim, Woong-Sun;Moon, Dae-Yong;Kim, Kyung-Taek;Shin, Sae-Young;Han, Dong-Suk;Park, Jae-Gun;Park, Jong-Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2010
  • In this study, $Al_2O_3$ and $TiO_2$ films was deposited on to PES (poly(ethersulfon) substrate by using atomic layer deposition as functions of deposition temperature and plasma power. The density and carbon contents of $Al_2O_3$ and $TiO_2$ films was changed by varying process conditions. High density thin films was achieved through optimizing the process conditions. Buffer layer was deposited prior to the processing of upper thin films to avoid PES surface destruction during the high power plasma process and to enhances the tortuous path for water vapor permeation for the defect decoupling effect. The water vapor transmission rate by using MOCON test was investigated to analyze the effect. Water vaper permeation properties was improved by using the inorganic multi-layer passivation layer and activation energy of the water vapor permeation was increased.