• Title/Summary/Keyword: Deposition Hole

Search Result 216, Processing Time 0.027 seconds

Arsenic Doping of ZnO Thin Films by Ion Implantation (이온 주입법을 이용한 ZnO 박막의 As 도핑)

  • Choi, Jin Seok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

Material Topology Optimization Design of Structures using SIMP Approach Part I : Initial Design Domain with Topology of Partial Holes (SIMP를 이용한 구조물의 재료 위상 최적설계 Part I : 부분적인 구멍의 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • This study shows an implementation of partial holes in an initial design domain in order to improve convergences of topology optimization algorithms. The method is associated with a bubble method as introduced by Eschenauer et al. to overcome slow convergence of boundary-based shape optimization methods. However, contrary to the bubble method, initial holes are only implemented for initializations of optimization algorithm in this approach, and there is no need to consider a characteristic function which defines hole's deposition during every optimization procedure. In addition, solid and void regions within the initial design domain are not fixed but merged or split during optimization Procedures. Since this phenomenon activates finite changes of design parameters without numerically calculating movements and positions of holes, convergences of topology optimization algorithm can be improved. In the present study, material topology optimization designs of Michell-type beam utilizing the initial design domain with initial holes of varied sizes and shapes is carried out by using SIMP like a density distribution method. Numerical examples demonstrate the efficiency and simplicity of the present method.

Dependency of the emission efficiency on doping profile of the red phosphorescent organic light-emitting diodes

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.224-224
    • /
    • 2016
  • Many researchers have been tried to improve the performance of the phosphorescent organic light-emitting diode(PHOLED) by controlling of the dopant profile in the emission layer. In this work, as shown in Fig. 1 insert, a typical red PHOLED device which has the structure of ITO/NPB(50nm)/CBP(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) is fabricated with a 5nm thick doping section in the emission layer. The doping section is formed by co-deposition of CBP and Ir(btp)2acac with a doping concentration of 8%, and it's location(x) is changed from HTL/EML interface to EML/HBL in 5nm steps. The current efficiency versus current density of the devices are shown in Fig. 1. By changing the location of doping section, as shown in Fig. 1 and 2, at x=5nm, the efficiency shows the maximum of 3.1 cd/A at 0.5 mA/cm2 and it is slightly decreased when the section is closed to HTL and slightly increased when the section is closed to HBL. If the doping section is closed to HTL(NPB) the excitons can be quenched easily to NPB's triplet state energy level(2.5eV) which is relatively lower than that of CBP(2.6eV). Because there is a hole accumulation at EML/HBL interface the efficiency can be increased slightly when the section is closed to HBL. Even the thickness of the doping section is only 5nm,. the maximum efficiency of 3.1 cd/A with x=5 is closed to that of the homogeneously doped device, 3.3 cd/A, because the diffusion length of the excitons is relatively long. As a result, we confirm that the current efficiency of the PHOLED can be improved by the doping profile optimization such as partially, not homogeneously, doped EML structure.

  • PDF

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Thermohydromechanical Behavior Study on the Joints in the Vicinity of an Underground Disposal Cavern (심부 처분공동 주변 절리에서의 열수리역학적 거동변화)

  • Jhin wung Kim;Dae-seok Bae
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.171-191
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior on joints adjacent to a repository cavern, when high level radioactive wastes are disposed of within discontinuous granitic rock masses, and then, to contribute this understanding to the development of a disposal concept. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuels in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within a model. Joint set 1 includes joints of $56^{\circ}$ dip angle, spaced 20m apart, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of $34^{\circ}$ dip angle, spaced 20m apart. The two dimensional distinct element code, UDEC is used for the analysis. To understand the joint behavior adjacent to the repository cavern, Barton-Bandis joint model is used. Effect of the decay heat from PWR spent fuels on the repository model has been analyzed, and a steady state flow algorithm is used for the hydraulic analysis.

An Experimental Study on Depositional Environments and Consolidation Properties of Shihwa Deposits (시화지역 퇴적층의 퇴적환경과 압밀특성에 관한 연구)

  • 원정윤;장병욱;김동범;손영환
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.49-58
    • /
    • 2004
  • Consolidation properties of Shihwa deposits were analysed by means of depositional environments. Depositional environments including particle size distributions, sediment structures, geochemical properties, porewater chemistries and carbon age dating were analysed using undisturbed samples retrieved successively from a boring hole in the study area. Laboratory oedometer tests and anisotropic consolidated triaxial tests (CKoUC) for undisturbed samples were performed to examine the overconsolidation phenomena. Based on the results of analysis of depositional environments, it was found that the upper silt/clay mixed layer was deposited under marine condition while underlying sand and clay layers were deposited under fluvial condition. Planar laminated structures of silts and clays were dominant in marine deposits. Although there was no clear evidences that geological erosion had occurred in marine deposits, overconsolidation ratios of the upper marine samples were greater than unity Stress Paths of the upper marine samples behaved similarly to those of normally consolidated clays. Data plotted in stress state charts showed that the marine deposits were normally consolidated in geological meaning. These apparent overconsolidation of the marine deposits can be explained by the structures i.e. chemical bonding due to the difference of the rate of deposition, not by geological erosions and ground water fluctuations.

A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer (2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구)

  • 이형욱
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

Nucleation and growth mechanism of nitride films deposited on glass by unbalanced magnetron sputtering

  • Jung, Min J.;Nam, Kyung H.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.14-14
    • /
    • 2001
  • Nitride films such as TiN, CrN etc. deposited on glass by PVD processes have been developed for many industrial applications. These nitride films deposited on glass were widely used for not only decorative and optical coatings but also wear and corrosion resistance coatings employed as dies and molds made of glass for the example of lens forming molds. However, the major problem of nitride coatings on glass by PVD process is non-uniform film owing to pin-hole and micro crack. It is estimated that nonuniform coating is influenced by a different surface energy between metal nitrides and glass due to binding states. In this work, therefore, for the evaluation of nucleation and growth mechanism of nitride films on glass TiN and CrN film were synthesized on glass with various nitrogen partial pressure by unbalanced magnetron sputtering. Prior to deposition, for the examination of relationship between surface energy and film microstructure plasma pre-treatment process was carried out with various argon to hydrogen flow rate and substrate bias voltage, duty cycle and frequency by using pulsed DC power supply. Surface energy owing to the different plasma pre-treatment was calculated by the measurement of wetting angle and surface conditions of glass were investigated by X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscope(AFM). The microstructure change of nitride films on glass with increase of film thickness were analyzed by X-Ray Diffraction(XRD) and Scanning Electron Microscopy(SEM).

  • PDF

Nitrogen and Phosphorus Runoff Loss during Summer Season in Sandy Loam Red Pepper Field as Affected by Different Surface Management Practices in Korea

  • Han, Kyung-Hwa;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.669-676
    • /
    • 2016
  • A field study was conducted to determine the runoff loss of N and P in small scale of red pepper field plots (10% slope), consisting of three different plots with black polyethylene vinyl mulching (mulching), ridge without mulching (ridge), and flat without ridge and mulching (flat). Composted manure and urea as a basal application were applied at rates of $20MT\;ha^{-1}$ and $93kg\;N\;ha^{-1}$, respectively. Urea at $189kg\;N\;ha^{-1}$ and fused phosphate at $67kg\;P_2O_5\;ha^{-1}$ were additionally applied on June 25 with different fertilization methods, broadcast application in flat plot and hole injection in ridge and mulching plots. Plant uptake of N and P was positively correlated with their respective concentrations in surface soil: mulching > ridge > flat plots. The runoff loss by soil erosion was higher in flat plot than ridge and mulching plot with contour line. Nitrate loss by the runoff water had no significant differences among three surface management practices, but the higher average value in ridge and mulching plots than flat plot. Especially, the flat plot had no phosphate loss during summer season. This is probably due to low labile P content in surface soil of flat plot. In the summation of soil and water loss, flat plot was higher in N and P loss than ridge and mulching plot with contour line. Nevertheless, the nitrate and phosphate loss by runoff water could be more important for non-point source management because the water could meet the river easier than eroded soil because of re-deposition around slope land.

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF