• Title/Summary/Keyword: Depletion depth

Search Result 62, Processing Time 0.024 seconds

A Modeling and Numerical Simulation of Treshold Voltage for Short Channel MOSFET (단 채널 MOSFET의 문턱 전압 모델링과 수치계산)

  • 강정진;이종악
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 1990
  • In this paper, I derived a two-dimensional analytical closed-form expression of the threshold voltage for small size MOSFET. The invalid assumptions of constant surface portential or uniform depletion depth were corrected. A comparison between the results of pre-models analyses and the present's proved that this paper's model is quite accurate. Therefore, this model will become a useful design tool for short channel MOSFET.

  • PDF

Cool gas and star formation properties of ram pressure stripped galaxy NGC 4522: Insights from the TIGRESS simulation

  • Choi, Woorak;Lee, Bumhyun;Chung, Aeree;Kim, Chang-Goo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2019
  • NGC 4522 is one of the best-known examples among the Virgo galaxies undergoing active ram pressure stripping. There have been a number of detailed observational and theoretical studies on this galaxy to constrain its stripping and star formation history. However, the impact of ram pressure on the multi-phased ISM, in particular molecular gas which plays an important role in star formation, is still not fully understood. NGC 4522, as a system where the extra-planar molecular gas is identified, is an ideal case to probe in depth how ram pressure affects molecular gas properties. Aiming to get more theoretical insights on the detailed stripping process of multi-phased ISM and its consequences, we have conducted simulations using the TIGRESS which could reproduce the realistic ISM under comparable conditions as NGC 4522. In this work, we compare the fraction of gas mass to stellar mass, star formation rates and gas depletion time scales of NGC 4522 with those measured from the simulations, not only inside the disk but also in the extra-planar space.

  • PDF

Immunopathogenesis of childhood idiopathic nephrotic syndrome

  • Hae Il Cheong
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Pediatric nephrotic syndrome (NS) is a clinical syndrome characterized by massive proteinuria, hypoalbuminemia, and generalized edema. Most childhood NS cases are idiopathic (with an unknown etiology). Traditional therapeutic approaches based on immunosuppressive agents largely support the key role of the immune system in idiopathic NS (INS), especially in the steroid-sensitive form. Although most previous studies have suggested the main role of T cell dysfunction and/or the abnormal secretion of certain glomerular permeability factors, recent studies have emphasized the role of B cells since the therapeutic efficacy of B cell depletion therapy in inducing and/or maintaining prolonged remission in patients with INS was confirmed. Furthermore, several studies have detected circulating autoantibodies that target podocyte proteins in a subset of patients with INS, suggesting an autoimmune-mediated etiology of INS. Accordingly, a new therapeutic modality using B cell-depleting drugs has been attempted, with significant effects in a subset of patients with INS. Currently, INS is considered an immune-mediated disorder caused by a complex interplay between T cells, B cells, soluble factors, and podocytes, which may vary among patients. More in-depth investigations of the pathogenic pathways of INS are required for an effective personalized therapeutic approach and to define precise targets for therapeutic intervention.

Carburization Characteristics of MERT Type KHR-45A Steel in Carbon Rich Environment (Carbon Rich 분위기에서의 KHR45강의 침탄특성 평가 연구)

  • Lim, Jae Kyun;Yang, Gimo;Ihm, Young Eon
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.293-298
    • /
    • 2013
  • In this study, an HP-mod. type(KHR-45A), which is used as a heater tube material in the pyrolysis process, was evaluated for its carburizing properties. It was confirmed from the microstructural observation of the tubes that the volume fraction of carbide increased and that the coarsening of Cr-carbide generated as a degree of carburization increased. The depth of the hardened layer, which is similar to the thickness of the carburized region of each specimen, due to carburization is confirmed by measurement of the micro-Vickers hardness of the cross section tube, which thickness is similar to that of the carburized region of each specimen. Two types of chromium carbides were identified from the EBSD (electron back-scattered diffraction) image and the EDS (energy-dispersive spectroscopy) analysis: Cr-rich $M_{23}C_6$ in the outer region and Cr-rich $M_7C_3$ in the inner region of tubes. The EDS analysis revealed a correlation between the ferromagnetic behavior of the tubes and the chromium depletion in the matrix. The chromium depletion in the austenite matrix is the main cause of the magnetization of the carburized tube. The method used currently for the measurement of the carburization of the tubes is confirmed; carburizing evaluation is useful for magnetic flux density measurement. The volume fraction of the carbide increased as the measuring point moved into the carburized side; this was determined from the calculation of the volume fraction in the cross-section image of the tubes. These results are similar to the trends of carburization measurement when those trends were evaluated by measurement of the magnetic flux density.

A Note on Estimating and Managing Groundwater Reserves (지하수 부존량 평가와 관리에 대한 소고)

  • Lee, Byung Sun;Park, Jong Hwan;Myoung, Wooho;Son, Joohyeong;Lee, Sanghaw;Shim, Gyuseong;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.28-36
    • /
    • 2018
  • This study was conducted to estimate groundwater reserves within a designated depth. Three methods were applied to one representative county in southern Gyeongsang province, South Korea, to estimate the groundwater reserves in the aquifers. Estimated amounts of groundwater reserves in the region ranged from $20.2{\times}10^9m^3$ to $68.7{\times}10^9m^3$ (average $37.9{\times}10^9m^3$). Groundwater recharge obtained with a recharge ratio of 16.6% was $1.1{\times}10^9m^3/year$. Exploitable groundwater with an assumption of decadal-cycle minimal rainfall of 977.0 mm/year was approximated as 72% ($0.8{\times}10^9m^3/year$) of the total replenished water by recharge. The volume of recharge and exploitable water accounted for only 1.1% and 0.8% of groundwater reserves, respectively, which indicates substantial capacity of the reservoir to supply groundwater in an event of unexpected droughts. Nonetheless, each groundwater well should strictly comply with its allocated pumping rate to avoid alluvial groundwater depletion.

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.

Study on the Natural Frequency of Wind Turbine Tower Based on Soil Pile interaction to Evaluate Resonant Avoidance Frequency (지반조건 상호작용을 고려한 풍력발전타워의 공진회피 진동수 산정을 위한 고유진동수 해석 연구)

  • Kim, Pyoung-Hwa;Kang, Sung-Yong;Lee, Yun-Woo;Kang, Young-jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.734-742
    • /
    • 2016
  • Global warming and the depletion of fossil fuels have been caused by decades of reckless development. Wind energy is one form of renewable energy and is considered a future energy source. The wind tower is designed with a fundamental frequency in the soft-stiff design between the 1P and 3P range to avoid resonance. Usually, to perform natural frequency analysis of a wind tower, the boundary condition is set to the Fixed-End, and soil-pile interaction is not considered. In this study, consideration of the effect of soil-pile interaction on the wind tower was included and the difference in the natural frequency was studied. The fixed boundary condition was not affected by the soil condition and depth of the pile and the coupled spring boundary condition was unaffected by the depth of pile but affected by the depth of the pile, and the Winkler spring boundary condition is affected by both the soil condition and the depth of the pile. Therefore, the coupled spring boundary condition should be used in shallow depth soil conditions because the soil condition does not take the shallow depth soil into consideration.

Effect of Fe2O3 Concentration in Coal Slag on the Formation of (Fe,Cr)3O4 in Chromia Refractory (크롬계 내화물에서 슬래그의 산화철 농도가 (Fe,Cr)3O4 형성에 미치는 영향)

  • Park, Woo Sung;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.495-500
    • /
    • 2007
  • The inside wall of a coal gasifier is lined with refractory, and the corrosion of the refractory is an important factor affecting the refractory lifetime and the replacement period. This paper examines the changes in microstructure of a chromia refractory due to chemical reactions with slag having varying amounts of $Fe_2O_3$. Slag samples were prepared by adding $Fe_2O_3$ to KIDECO slag, and static corrosion experiments were carried out at $1550^{\circ}C$. The layer of $(Fe,Cr)_3O_4$ formation and the depth of Fe depletion in the infiltrating slag were determined. In addition, FactSage equilibrium calculations were carried out in order to determine the conditions of formation, and to compare with the experimental observations. In the sample exposed to KIDECO slag, which has about 10 wt% $Fe_2O_3$, the formation of $(Fe,Cr)_3O_4$ was not observed. As the $Fe_2O_3$ concentration in slag increased, $(Fe,Cr)_3O_4$ formation and Fe depletion depth increased. Increasing $Fe_2O_3$ concentration also made the slag/refractory interface indistinguishable. Equilibrium calculations predicted that higher $Fe_2O_3$ concentrations favor chromite formation at gasification temperatures. The chromite formation was most favorable when the amount of $Cr_2O_3$ was limited, as in the case of dissolved $Cr_2O_3$ in slag. When the concentration of $Fe_2O_3$ in slag was less than 20%, the formation of chromite was least favorable in the system with equal amounts of slag and refractory.

Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel (양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향)

  • Lim, Yun-Soo;Kim, Dong-Jin;Hwang, Seong Sik;Choi, Min Jae;Cho, Sung Whan
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.158-168
    • /
    • 2021
  • Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.

The Sannae-Eonyang Granitic Rocks and Hydrothermal System, Southeastern Kyongsang Basin

  • Yang, Kyoung-Hee;Lee, Joon-Dong
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The Sannae-Eonyang granitic rocks are a large fossil hydrothermal system containing the Sannae Mo-W fissure-vein type and the Eonyang amethyst deposits in the southeastern Kyongsang Basin. They evolved through similar stages showing the similarities in chemical and mineralogical compositions, fractionation trends and early magmatic fluids. Major, trace and rare earth element(REE) variations can be accounted for fractional crystallization combined with variable degrees of metasomatism. Based on the aqueous fluids exsolved directly from the crystallizing melt, the Sannae-Eonyang granitic rocks were emplaced at similar depth or pressure conditions. High temperature fluid interaction with the granitic rocks affects the elements such as K, Na, Rb, Ba, Sr, Eu, and heavy REE (HREE) mostly through feldspar re-equilibration. Although hydrothermal fluids produced partly positive Eu anomalies and HREE depletion in the granitic rocks at the Sannae Mo-W mine, the chemical concentrations defining fractionnation trends have survived the effects of alteration. Aqueous fluids exsolved from the crystallizing melt appears to be widespread, whereas fluids of moderate to low salinity and low-density with relatively high homogenization temperatures and $Co_2$-rich fluids appear to be mainly restricted and responsible for Mo-W and amethyst mineralization, respectively. Hydrothermal system of the Sannae-Eonyang granitic rocks represents repeated fluid events; from exsolution of aqueous fluids from the crystallizing melt, through fluid immiscibility and meteoric convection to later mineralization.

  • PDF