DOI QR코드

DOI QR Code

Effects of Proton Irradiation on the Microstructure and Surface Oxidation Characteristics of Type 316 Stainless Steel

양성자 조사가 316 스테인리스강의 미세조직과 표면산화 특성에 미치는 영향

  • Lim, Yun-Soo (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Jin (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Hwang, Seong Sik (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Choi, Min Jae (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Cho, Sung Whan (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
  • 임연수 (한국원자력연구원 재료안전기술개발부) ;
  • 김동진 (한국원자력연구원 재료안전기술개발부) ;
  • 황성식 (한국원자력연구원 재료안전기술개발부) ;
  • 최민재 (한국원자력연구원 재료안전기술개발부) ;
  • 조성환 (한국원자력연구원 재료안전기술개발부)
  • Received : 2021.05.25
  • Accepted : 2021.06.14
  • Published : 2021.06.30

Abstract

Austenitic 316 stainless steel was irradiated with protons accelerated by an energy of 2 MeV at 360 ℃, the various defects induced by this proton irradiation were characterized with microscopic equipment. In our observations irradiation defects such as dislocations and micro-voids were clearly revealed. The typical irradiation defects observed differed according to depth, indicating the evolution of irradiation defects follows the characteristics of radiation damage profiles that depend on depth. Surface oxidation tests were conducted under the simulated primary water conditions of a pressurized water reactor (PWR) to understand the role irradiation defects play in surface oxidation behavior and also to investigate the resultant irradiation assisted stress corrosion cracking (IASCC) susceptibility that occurs after exposure to PWR primary water. We found that Cr and Fe became depleted while Ni was enriched at the grain boundary beneath the surface oxidation layer both in the non-irradiated and proton-irradiated specimens. However, the degree of Cr/Fe depletion and Ni enrichment was much higher in the proton-irradiated sample than in the non-irradiated one owing to radiation-induced segregation and the irradiation defects. The microstructural and microchemical changes induced by proton irradiation all appear to significantly increase the susceptibility of austenitic 316 stainless steel to IASCC.

Keywords

Acknowledgement

이 논문은 2017년도 과학기술정보통신부의 재원으로 한국과학기술재단의 지원(2017M2A8A4015155, 고내식구조재료 부식균열 개시평가 및 대응기술 개발)과 2019년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(20191510301140, 해체원전 원자로 내부구조물 베플포머볼트 조사유기 응력부식 균열 열화 특성 분석 기술개발)을 받아 수행된 연구입니다.

References

  1. J. McKinley, R. Lott, B. Hall, and K. Kalchik, Proc. of the 16th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, Asheville, North Carolina (2013).
  2. R. Pathania, R. Carter, and A. Demma, Fontevraud 7, p. 26, Avignon, France (2010).
  3. S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Was, and J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials, 274, 299 (1999). Doi: https://doi.org/10.1016/S0022-3115(99)00075-6
  4. O. K. Chopra and A. S. Rao, A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels, Journal of Nuclear Materials, 409, 235 (2011). Doi: https://doi.org/10.1016/j.jnucmat.2010.12.001
  5. P. L. Andresen and G. S. Was, A historical perspective on understanding IASCC, Journal of Nuclear Materials, 517, 380 (2019). Doi: https://doi.org/10.1016/j.jnucmat.2019.01.057
  6. S. J. Zinkle and L. L. Snead, Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations, Scripta Materialia, 143, 154 (2018). https:// doi.org/10.1016/j.scriptamat.2017.06.041
  7. J. Gan and G. Was, Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures, Journal of Nuclear Materials, 297, 161 (2001). Doi: https://doi.org/10.1016/ S0022-3115(01)00615-8
  8. G. S. Was, J. T. Busby, T. Allen, E. A. Kenik, A. Jenssen, S. M. Bruemmer, J. Gan, A. D. Edwards, P. M. Scott, and P. L. Andresen, Emulation of neutron irradiation effects with protons: validation of principle, Journal of Nuclear Materials, 300, 198 (2002). Doi: https://doi.org/10.1016/ S0022-3115(01)00751-6
  9. B. H. Sencer, G. S. Was, M. Sagisaka, Y. Isobe, G. M. Bond, and F. A. Garner, Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels, Journal of Nuclear Materials, 323, 18 (2003). Doi: https:// doi.org/10.1016/j.jnucmat.2003.07.007
  10. K. J. Stephenson and G. S. Was, Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons, Journal of Nuclear Materials, 456, 85 (2015). Doi: https://doi.org/10.1016/j.jnucmat.2014.08.021
  11. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York (1985).
  12. D. J. Edwards, E. P. Simonen, and S. M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275℃, Journal of Nuclear Materials, 317, 13 (2003). Doi: https://doi.org/10.1016/S0022-3115(03)00002-3
  13. Z. Li, H. Abe, and N. Sekimura, Analysis of Defects Formation and Mobility during Ion Irradiation by Coherent Precipitates, Materials Transactions, 47, 259 (2006). Doi: https://doi.org/10.2320/matertrans.47.259
  14. D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda, Z. Li, L. Liu, and N. Sekimura, Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition, Nuclear Instruments and Methods in Physics Research B, 365, 503 (2015). Doi: https://doi.org/10.1016/j.nimb.2015.08.029
  15. L. Shao, C.-C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B. H. Sencer, and F. A. Garner, Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions, Journal of Nuclear Materials, 453, 176 (2014). Doi: https://doi.org/10.1016/ j.jnucmat.2014.06.002
  16. C. Zheng and D. Kaoumi, Radiation-induced swelling and radiation-induced segregation & precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel, Materials Characterization, 134, 152 (2017). Doi: https://doi.org/10.1016/j.matchar.2017.10.019
  17. R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, On the use of SRIM for computing radiation damage exposure, Nuclear Instruments and Methods Physics Research B, 310, 75 (2013). Doi: https://doi.org/10.1016/j.nimb.2013.05.008
  18. R. E. Schramm and R. P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, 316 SS stacking fault energy, Metallurgical Transactions A, 6, 1345 (1975). Doi: https://doi.org/10.1007/BF02641927
  19. P. J. Brofman and G. S. Ansell, On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels, Metallurgical Transactions A, 9, 879 (1978). Doi: https://doi.org/10.1007/BF02649799
  20. S. J. Zinkle, Radiation-Induced Effects on Microstructure, in: R.J.M. Konings (ed.), Comprehensive Nuclear Materials, Vol. 1, Elsevier, Amsterdam (2012).
  21. J.-J. Kai and R. D. Lee, Effects of proton irradiation on the microstructural and microchemical evolution of Inconel 600 alloy, Journal of Nuclear Materials, 207, 286 (1993). Doi: https://doi.org/10.1016/0022-3115(93)90271-Y
  22. Z. Jiao, J. T. Busby, and G. S. Was, Deformation microstructure of proton-irradiated stainless steels, Journal of Nuclear Materials, 361, 218 (2007). Doi: https://doi.org/10.1016/j.jnucmat.2006.12.012
  23. M. Meisnar, A. Vilalta-Clemente, M. Moody, K. Arioka, and S. Lozano-Perez, A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water, Acta Materialia, 114, 15 (2016). Doi: https://doi.org/10.1016/j.actamat.2016.05.010
  24. K. Kruska, S. Lozano-Perez, D. W. Saxey, T. Terachi, T. Yamada, and G. D. W. Smith, Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels, Corrosion Science, 63, 225 (2012). Doi: https:// doi.org/10.1016/j.corsci.2012.06.030
  25. Y. S. Lim, S.W. Kim, S. S. Hwang, H. P. Kim, and C. Jang, Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment, Corrosion Science, 108, 125 (2016). Doi: https://doi.org/10.1016/ j.corsci.2016.02.040
  26. R. C. Newman and F. Scenini, Another Way to Think About the Critical Oxide Volume Fraction for the Internal-to-External Oxidation Transition?, Corrosion, 64, 721 (2008). Doi: https://doi.org/10.5006/1.3278509
  27. S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Wa2011s, and J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials, 274, 299 (1999). Doi: https://doi.org/10.1016/S0022-3115(99)00075-6
  28. Y. S. Lim, S. S. Hwang, D. J. Kim, M. J. Choi, and J. Y. Lee, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, May 23-24, Korea (2019).
  29. V. Kain, R. C. Prasad, and P. K. De, Testing Sensitization and Predicting Susceptibility to Intergranular Corrosion and Intergranular Stress Corrosion Cracking in Austenitic Stainless Steels, Corrosion, 58, 15 (2002). Doi: https://doi.org/10.5006/1.3277301
  30. T. Fujii, R. Yamakawa, K. Tohgo, and Y. Shimamura, Analysis of the early stage of stress corrosion cracking in austenitic stainless steel by EBSD and XRD, Materials Characterization, 172, 110882 (2021). Doi: https:// doi.org/10.1016/j.matchar.2021.110882