Acknowledgement
이 논문은 2017년도 과학기술정보통신부의 재원으로 한국과학기술재단의 지원(2017M2A8A4015155, 고내식구조재료 부식균열 개시평가 및 대응기술 개발)과 2019년도 산업통상자원부의 재원으로 한국에너지기술평가원의 지원(20191510301140, 해체원전 원자로 내부구조물 베플포머볼트 조사유기 응력부식 균열 열화 특성 분석 기술개발)을 받아 수행된 연구입니다.
References
- J. McKinley, R. Lott, B. Hall, and K. Kalchik, Proc. of the 16th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, Asheville, North Carolina (2013).
- R. Pathania, R. Carter, and A. Demma, Fontevraud 7, p. 26, Avignon, France (2010).
- S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Was, and J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials, 274, 299 (1999). Doi: https://doi.org/10.1016/S0022-3115(99)00075-6
- O. K. Chopra and A. S. Rao, A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels, Journal of Nuclear Materials, 409, 235 (2011). Doi: https://doi.org/10.1016/j.jnucmat.2010.12.001
- P. L. Andresen and G. S. Was, A historical perspective on understanding IASCC, Journal of Nuclear Materials, 517, 380 (2019). Doi: https://doi.org/10.1016/j.jnucmat.2019.01.057
- S. J. Zinkle and L. L. Snead, Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations, Scripta Materialia, 143, 154 (2018). https:// doi.org/10.1016/j.scriptamat.2017.06.041
- J. Gan and G. Was, Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures, Journal of Nuclear Materials, 297, 161 (2001). Doi: https://doi.org/10.1016/ S0022-3115(01)00615-8
- G. S. Was, J. T. Busby, T. Allen, E. A. Kenik, A. Jenssen, S. M. Bruemmer, J. Gan, A. D. Edwards, P. M. Scott, and P. L. Andresen, Emulation of neutron irradiation effects with protons: validation of principle, Journal of Nuclear Materials, 300, 198 (2002). Doi: https://doi.org/10.1016/ S0022-3115(01)00751-6
- B. H. Sencer, G. S. Was, M. Sagisaka, Y. Isobe, G. M. Bond, and F. A. Garner, Proton irradiation emulation of PWR neutron damage microstructures in solution annealed 304 and cold-worked 316 stainless steels, Journal of Nuclear Materials, 323, 18 (2003). Doi: https:// doi.org/10.1016/j.jnucmat.2003.07.007
- K. J. Stephenson and G. S. Was, Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons, Journal of Nuclear Materials, 456, 85 (2015). Doi: https://doi.org/10.1016/j.jnucmat.2014.08.021
- J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York (1985).
- D. J. Edwards, E. P. Simonen, and S. M. Bruemmer, Evolution of fine-scale defects in stainless steels neutron-irradiated at 275℃, Journal of Nuclear Materials, 317, 13 (2003). Doi: https://doi.org/10.1016/S0022-3115(03)00002-3
- Z. Li, H. Abe, and N. Sekimura, Analysis of Defects Formation and Mobility during Ion Irradiation by Coherent Precipitates, Materials Transactions, 47, 259 (2006). Doi: https://doi.org/10.2320/matertrans.47.259
- D. Chen, K. Murakami, K. Dohi, K. Nishida, N. Soneda, Z. Li, L. Liu, and N. Sekimura, Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition, Nuclear Instruments and Methods in Physics Research B, 365, 503 (2015). Doi: https://doi.org/10.1016/j.nimb.2015.08.029
- L. Shao, C.-C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B. H. Sencer, and F. A. Garner, Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions, Journal of Nuclear Materials, 453, 176 (2014). Doi: https://doi.org/10.1016/ j.jnucmat.2014.06.002
- C. Zheng and D. Kaoumi, Radiation-induced swelling and radiation-induced segregation & precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel, Materials Characterization, 134, 152 (2017). Doi: https://doi.org/10.1016/j.matchar.2017.10.019
- R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, On the use of SRIM for computing radiation damage exposure, Nuclear Instruments and Methods Physics Research B, 310, 75 (2013). Doi: https://doi.org/10.1016/j.nimb.2013.05.008
- R. E. Schramm and R. P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, 316 SS stacking fault energy, Metallurgical Transactions A, 6, 1345 (1975). Doi: https://doi.org/10.1007/BF02641927
- P. J. Brofman and G. S. Ansell, On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels, Metallurgical Transactions A, 9, 879 (1978). Doi: https://doi.org/10.1007/BF02649799
- S. J. Zinkle, Radiation-Induced Effects on Microstructure, in: R.J.M. Konings (ed.), Comprehensive Nuclear Materials, Vol. 1, Elsevier, Amsterdam (2012).
- J.-J. Kai and R. D. Lee, Effects of proton irradiation on the microstructural and microchemical evolution of Inconel 600 alloy, Journal of Nuclear Materials, 207, 286 (1993). Doi: https://doi.org/10.1016/0022-3115(93)90271-Y
- Z. Jiao, J. T. Busby, and G. S. Was, Deformation microstructure of proton-irradiated stainless steels, Journal of Nuclear Materials, 361, 218 (2007). Doi: https://doi.org/10.1016/j.jnucmat.2006.12.012
- M. Meisnar, A. Vilalta-Clemente, M. Moody, K. Arioka, and S. Lozano-Perez, A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water, Acta Materialia, 114, 15 (2016). Doi: https://doi.org/10.1016/j.actamat.2016.05.010
- K. Kruska, S. Lozano-Perez, D. W. Saxey, T. Terachi, T. Yamada, and G. D. W. Smith, Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels, Corrosion Science, 63, 225 (2012). Doi: https:// doi.org/10.1016/j.corsci.2012.06.030
- Y. S. Lim, S.W. Kim, S. S. Hwang, H. P. Kim, and C. Jang, Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment, Corrosion Science, 108, 125 (2016). Doi: https://doi.org/10.1016/ j.corsci.2016.02.040
- R. C. Newman and F. Scenini, Another Way to Think About the Critical Oxide Volume Fraction for the Internal-to-External Oxidation Transition?, Corrosion, 64, 721 (2008). Doi: https://doi.org/10.5006/1.3278509
- S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, G. S. Wa2011s, and J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials, 274, 299 (1999). Doi: https://doi.org/10.1016/S0022-3115(99)00075-6
- Y. S. Lim, S. S. Hwang, D. J. Kim, M. J. Choi, and J. Y. Lee, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, May 23-24, Korea (2019).
- V. Kain, R. C. Prasad, and P. K. De, Testing Sensitization and Predicting Susceptibility to Intergranular Corrosion and Intergranular Stress Corrosion Cracking in Austenitic Stainless Steels, Corrosion, 58, 15 (2002). Doi: https://doi.org/10.5006/1.3277301
- T. Fujii, R. Yamakawa, K. Tohgo, and Y. Shimamura, Analysis of the early stage of stress corrosion cracking in austenitic stainless steel by EBSD and XRD, Materials Characterization, 172, 110882 (2021). Doi: https:// doi.org/10.1016/j.matchar.2021.110882