• Title/Summary/Keyword: Dependent structure

Search Result 2,243, Processing Time 0.034 seconds

Improved formulation for a structure-dependent integration method

  • Chang, Shuenn-Yih;Wu, Tsui-Huang;Tran, Ngoc-Cuong
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.149-162
    • /
    • 2016
  • Structure-dependent integration methods seem promising for structural dynamics applications since they can integrate unconditional stability and explicit formulation together, which can enable the integration methods to save many computational efforts when compared to an implicit method. A newly developed structure-dependent integration method can inherit such numerical properties. However, an unusual overshooting behavior might be experienced as it is used to compute a forced vibration response. The root cause of this inaccuracy is thoroughly explored herein. In addition, a scheme is proposed to modify this family method to overcome this unusual overshooting behavior. In fact, two improved formulations are proposed by adjusting the difference equations. As a result, it is verified that the two improved formulations of the integration methods can effectively overcome the difficulty arising from the inaccurate integration of the steady-state response of a high frequency mode.

A family of dissipative structure-dependent integration methods

  • Chang, Shuenn-Yih;Wu, Tsui-Huang;Tran, Ngoc-Cuong
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.815-837
    • /
    • 2015
  • A new family of structure-dependent integration methods is developed to enhance with desired numerical damping. This family method preserves the most important advantage of the structure-dependent integration method, which can integrate unconditional stability and explicit formulation together, and thus it is very computationally efficient. In addition, its numerical damping can be continuously controlled with a parameter. Consequently, it is best suited to solving an inertia-type problem, where the unimportant high frequency responses can be suppressed or even eliminated by the favorable numerical damping while the low frequency modes can be very accurately integrated.

A stability factor for structure-dependent time integration methods

  • Shuenn-Yih Chang;Chiu-Li Huang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • Since the first family of structure-dependent methods can simultaneously integrate unconditional stability and explicit formulation in addition to second order accuracy, it is very computationally efficient for solving inertial problems except for adopting auto time-stepping techniques due to no nonlinear iterations. However, an unusual stability property is first found herein since its unconditional stability interval is drastically different for zero and nonzero damping. In fact, instability might occur for solving a damped stiffness hardening system while an accurate result can be obtained for the corresponding undamped stiffness hardening system. A technique of using a stability factor is applied to overcome this difficulty. It can be applied to magnify an unconditional stability interval. After introducing this stability factor, the formulation of this family of structure-dependent methods is changed accordingly and thus its numerical properties must be re-evaluated. In summary, a large stability factor can result in a large unconditional stability interval but also lead to a large relative period error. As a consequence, a stability factor must be appropriately chosen to have a desired unconditional stability interval in addition to an acceptable period distortion.

Simulations of time dependent temperature distributions of Super-ROM disk structure using finite element method (유한요소법을 이용한 Super-ROM 디스크 구조의 열 분포 해석)

  • Ahn, Duck-Won;You, Chun-Yeol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.132-136
    • /
    • 2005
  • It is widely accepted that the reading mechanism of Super-RENS(super-resolution near field structure) and Super-ROM(super-resolution read only memory) is closely related with non-linear temperature dependent material properties such as refractive indices, phase change. Furthermore, the dynamic change of the temperature distribution also an essential part of reading mechanism of Super-RENS/ROM. Therefore, the knowledge of the temperature distribution as a function a time is one of the important keys to reveal the physics of reading mechanism in Super-RENS/ROM. We calculated time-dependent temperature distribution in a 3-dimensional Super-ROM disk structure when moving laser beam is irradiated. With a help of commercial software FEMLAB which employed finite element method, we simulated the temperature distribution of ROM structure whose pit diameter is 120-nm with 50-nm depth. Energy absorption by moving laser irradiation, time variations of heat transfer processes, heat fluxes, heat transfer ratios, and temperature distributions of the complicate 3-dimensional ROM structure have been obtained.

  • PDF

Time dependent Analysis of RC Column in Subway Structure having high Filled Soil Layer (토피가 큰 콘크리트 지하구조물의 기둥에 대한 시간의존적 해석)

  • Jeong, Jae-Pyoung;Lee, Sang-Hee;Kim, Saeng-Bin;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.603-608
    • /
    • 1998
  • This study was performed to examine the effect of time dependent properties on RC columns in subway structures subjected to high filled soil layer. By using Program TCC which is a modified version of CPF for the present purpose, a typical column in subway structure was analyzed. Four different model equations for predicted time dependent concrete properties(ACI, CEB-FIP, Bazant & Panula and Korea Bridge Specification) was employed, and the results were compared. It was found that a relevant creep coefficient is recommended to be 1.0 for designing columns in subway structure, and the sol filling work would be performed at least 3 months later after the concrete casting in order to ensure durability by reducing the negative effect of concrete time dependent properties.

  • PDF

Analysis of Multi-Story Prestressed Concrete Structure Considering the Effect of Construction Stage (시공단계의 영향을 고려한 프리스트레스 콘크리트 다층 구조물의 해석)

  • Jeon, Chan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.213-223
    • /
    • 2001
  • This paper presents an analytical procedure for the time-dependent analysis of the multi-story prestressed concrete structure under the construction stage. To account for the actual structural behavior, the procedure considers the effects due to the construction interval and the time-dependent losses of prestress at every construction step on the entire structural response. A numerical study is performed to demonstrate the general validity of the approach and to quantitatively evaluate the effects resulted from the time-dependent behaviors during construction. Recommendations and conclusions are developed by comparisons with structural responses using the present and conventional methods of analysis. The comparative results show that both effects of sequential construction and time-dependent prestress losses should be considered for the construction stage analysis.

  • PDF

Validity of Blockwise Bootstrapped Empirical Process with Multivariate Stationary Sequences

  • Kim, Tae-Yoon;Shin, Ki-Dong;Song, Gyu-Moon
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.407-418
    • /
    • 2001
  • Buhlmann(1944) established the validity of the block bootstrap proposed by Kunsch when it is applied to p-dimensional $\alpha$-mixing dependent sequence. But his result requires a rather restrictive condition on p in the sense that p is entangled with dependence structure. We address that such restriction on p(or complication of dependence structure with p) could be removed completely when the underlying dependence structure is replace by more weakly dependent structure such as ø-mixing.

  • PDF

Effects of soil-structure interaction on construction stage analysis of highway bridges

  • Ates, Sevket;Atmaca, Barbaros;Yildirim, Erdal;Demiroz, Nurcan Asci
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.169-186
    • /
    • 2013
  • The aim of this paper is to determine the effect of soil-structure interaction and time dependent material properties on behavior of concrete box-girder highway bridges. Two different finite element analyses, one stage and construction stage, have been carried out on Komurhan Bridge between Elazi$\breve{g}$ and Malatya province of Turkey, over Fırat River. The one stage analysis assume that structure was built in a second and material properties of structure not change under different loads and site conditions during time. However, construction stage analysis considers that construction time and time dependent material properties. The main and side spans of bridge are 135 m and 76 m, respectively. The bridge had been constructed in 3 years between 1983 and 1986 by balanced cantilever construction method. The parameters of soil-structure interaction (SSI), time dependent material properties and construction method are taken into consideration in the construction stage analysis while SSI is single parameter taking into consideration in the one stage analysis. The 3D finite element model of bridge is created the commercial program of SAP2000. Time dependent material properties are elasticity modulus, creep and shrinkage for concrete and relaxation for steel. Soft, medium, and firm soils are selected for evaluating SSI in both analyses. The results of two different finite element analyses are compared with each other. It is seen that both construction stage and SSI have a remarkable effect on the structural behavior of the bridge.

The Immediate Effects of Five-Toed Shoes on Foot Structure

  • Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.397-403
    • /
    • 2011
  • The purpose of this study is to analyze the immediate effects of five toed shoes on foot structure. Subjects consisted of 26 college-aged women with pes planus. X-ray analysis of student feet were performed both barefooted and with five toed shoes. Dependent variables were hallux valgus angle, calcaneal inclination angle, 1st metatarsal declination angle, and intermetartarsal angle. Independent t-test was used for statistical analysis along with SAS. Overall, there were statistically significant changes of test subject's dependent variables when wearing five toed shoes. Specifically, the hallux valgus angle decreased, the calcaneal inclination angle and 1st metatarsal inclination angle increased, and intermetatasal angles both increased and decreased, shifting towards normal range. In every case the dependent variables shifted towards a more normal range while subjects wore five toed shoes. This study only examined the immediate corrective effects of five toed shoes on foot structure, but long-term studies are needed to understand the prolonged effects of five toed shoes on foot structure.

Research on Buried Depth Dependent Characteristics of Potential Rise for Structure (구조물 전위상승의 매설깊이 의존특성에 관한 연구)

  • Gil, Hyoung-Jun;Kim, Hyang-Kon;Kim, Dong-Ook;Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.104-108
    • /
    • 2007
  • This paper deals with an approach to the reduction of potential rise according to the buried depth of structure. In order to analyze the surface potential rise of structure, an electrolytic tank which simulates the semi-infinite earth has been used. The potential rise has been measured and analyzed for types of structure using an electrolytic tank experimental apparatus in real time. The structure models were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. When a test current flowed through structure models, potential gradient was the highest value in case of the outline frame type(structure model A). The distributions of surface potential rise are dependent on the resistivity and absorption percentage in concrete attached to structure model.