• Title/Summary/Keyword: Denture resin

Search Result 281, Processing Time 0.028 seconds

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

Evaluation of Mechanical Properties of Three-dimensional Printed Flexible Denture Resin according to Post-polymerization Conditions: A Pilot Study

  • Lee, Sang-Yub;Lim, Jung-Hwa;Shim, June-Sung;Kim, Jong-Eun
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate whether three-dimensional (3D)-printed flexible denture resin has suitable mechanical properties for use as a thermoplastic denture base resin material. Materials and Methods: A total of 96 specimens were prepared using the 3D printed flexible denture resin (Flexible Denture). Specimens were designed in CAD software (Tinkercad) and printed through a digital light-processing 3D printer (Asiga MAX UV). Post-polymerization process was conducted according to air exposure or glycerin immersion at 35℃ or 60℃ and for 30 or 60 minutes. The maximum flexural strength, elastic modulus, 0.2% offset yield strength, and Vickers hardness of 3D-printed flexible denture resin were assessed. Result: The maximum flexural strength ranged from 64.46±2.03 to 84.25±4.32 MPa, the 0.2% offset yield strength ranged from 35.28±1.05 to 46.13±2.33 MPa, the elastic modulus ranged from 1,764.70±64.66 to 2,179.16±140.01 MPa, and the Vickers hardness ranged from 7.01±0.40 to 11.45±0.69 kg/mm2. Conclusion: Within the limits of the present study, the maximum flexural strength, 0.2% offset yield strength, elastic modulus, and Vickers hardness are sufficient for clinical use under the post-polymerization conditions of 60℃ at 60 minutes with or without glycerin precipitation.

A CLINICAL STUDY ON THE RETENTION OF MAXILLARY COMPLETE DENTURE WITH DIFFERENT DENTURE BASE MATERIALS (의치상의 종류에 따른 상악 의치상의 유지력에 관한 임상적 연구)

  • Lee Jong-Hyuk;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.58-70
    • /
    • 2001
  • For the successful treatment of complete denture, obtaining a good retention is essential. There are lots of factors affecting denture retention. Denture material, one of those factors affecting denture retention, was the subject of this study, and internal surface treatment also considered for the method of enhancing denture retention. Two resin(Lucitone $199^{(R)}$(heat cured resin) Vertex $CP^{(R)}$(self cured resin)) and two metal($Biosil^{(R)}$(Co-Cr alloy), $Vitallium^{(R)}$(Co-Cr alloy)) denture base materials were used for making test denture base. Newly developed device was used for measuring denture retention. After the retention was measured. We treated internal surface of test denture base with $50{\mu}m\;Al_2O_3$ powder, under 90psi, for 1 minute. Then the retention was measured again. The result was analyzed with K-S test, one-way ANOVA test and independent t-test to deter mine the significant differences as the 95% level of confidence. The results are as follows : In cases of without internal surface treatment, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Vertex CP^{(R)}$ and Lucitone $199^{(R)}$. Except between Vertex $CP^{(R)}$ and $Biosil^{(R)}$, retention of the other materials was significantly different (p<0.05). After the treatment of internal surface, the retention was increased in order of $Vitallium^{(R)},\;Biosil^{(R)},\;Lucno\;199^{(R)},\;Vertex\;CP^{(R)}$. Except between Lucitone $199^{(R)}$ and Vertex $CP^{(R)}$, $Vitallium^{(R)}$ and $Biosil^{(R)}$ the retention of remaining groups was significantly different each other (p<0.05). In the matter of each material, after the internal surface treatment the retention was increased with Vertex $CP^{(R)},\;Biosil^{(R)}\;and\;Vitallium^{(R)}$ and the value of differences were statistically significant. When we compare the retention of resin and metal denture base, the retention of both denture bases increased significantly with internal surface treatment, and resin denture base showed better retention. As the results show, selecting denture base material could be an important choice of complete denture treatment. To increase denture retention, internal surface treatment can be considered as a possible method.

  • PDF

COMPARATIVE TENSILE BOND STRENGTH OF HEAT-CURED, COLD-CURED, AND LIGHT CURED DENTURE BASE RESINS BONDED TO CONTINUOUS-PRESSURE INJECTION TYPE DENTURE BASE RESIN (지속적 가압 주사식 열중합 의치상 레진에 대한 열중합, 자가중합 및 광중합 레진의 결합력에 관한 비교분석)

  • Whang Seung-Woo;Chung Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.385-393
    • /
    • 1993
  • Injection processing of denture base resin was introduced by Pryer in 1942, in an attempt to reduce processing shrinkage. More recently a continuous-pressure injection type technique has been developed (SR-Ivocap, Ivoclar AG, Schaan, Liechtenstein.), and it reduced processing error and increased resin density. The purpose of this study was to compare tensile bond strength of heat-cured, cold-cured, and light-cured denture base resin bonded to continuous-pressure injection type resin. To know it, 60 cylindrical resin specimens were fabricated, and tensile bond strength were measured. The results were as follows : 1. The mean tensile bond strength bonded to continuous-pressure injection type resin was lower than bonded to conventional heat cured resin. But tensile bond strength of conventional heat cured resin bonding with light cured resin was lower than continuous-pressure injection type resin. 2. Of the tensile bond strength bonded to continuous-pressure injection type resin, tensile bond strength bonding with continuous-pressure injection type resin was the greatest(but not significantly different from bonding with conventional heat cured resin), followed by cold-cured, light-cured resin. 3. Of the tensile bond strength bonded to conventional heat cured resin, tensile bond strength bonding with conventional heat cured resin was the greatest and followed by continuous-pressure injection type resin, cold-cured resin, light-cured resin. According to these results, bonding of continuous-pressure injection type resin with conventional heat cured resin or continuous-pressure injection type resin is acceptable, but bonding with light-cured resin is questionable.

  • PDF

EFFECT OF DENTURE BASE SURFACE PRETREATMENTS ON THE TENSILE BOND STRENGTH BETWEEN A RESILIENT LINER AND A PROCESSED DENTURE BASE RESIN (의치상 레진의 표면 전처리가 연성 이장재와의 인장결합강도에 미치는 영향)

  • Yoon, Min-Chul;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.621-632
    • /
    • 2007
  • Statement of problem: The failure of adhesion between the resilient denture liner and the denture base is a serious problem in clinic. Purpose: The purpose of this study was to evaluate the effect of denture base resin surface pretreatments (mechanical and/or chemical) on the tensile bond strength between a resilient liner and processed denture resin. Material and method. Acrylic-based resilient liners (Soft liner; GC co., Japan & Coe-Soft; GC America Inc. USA) and silicone-based resilient liners (Mucosoft, Parkell Inc., USA & Dentusil; Bosworth co., USA) were used. Specimens in each soft lining material were divided two groups with or without mechanical pretreatment. Each denture base specimen received 1 of 4 chemical pretreatments including: (1) no treatment, (2) 30-s acetone treatment, (3) 15-s methylene chloride treatment, (4) 180-s methyl methacrylate treatment. All specimens were thermocycled and placed under tension until failure in a universal testing machine. Results: 1. Silicone-based resilient liners exhibited significantly higher tensile bond strengths than acrylic-based resilient liners (P<.05). 2. Grinding the denture base resin improved tensile bond strengths of silicone-based resilient liners, but reduced tensile bond strengths of acrylic-based resilient liners (P<.05). 3. In acrylic-based resilient liners, treating with acetone significantly increased the bond strength of Soft liner and treating with methyl methacrylate significantly increased the bond strength of Coe-Soft (P<.05). However they were not effective compared to silicone-based resilient liner. 4. In silicone-based resilient liners, treating with all chemical etchants significantly increased the bond strength of Mucosoft to denture base, and treating with methylene chloride and methyl methacrylate increased the bond strength of Dentusil to denture base (P<.05). Conclusion: Although chemical and mechanical pretreatments were not effective on tensile bond strength of acrylic-based resilent liner to denture base, treating the denture base resin surface with appropriate chemical etchants after mechanical pretreatment significantly increased the tensile bond strength of silicone-based resilient liner to denture base.

COMPARISON OF WEAR RESISTANCE AMONG RESIN DENTURE TEETH OPPOSING VAR10US RESTORATIVE MATERIALS (수복재료에 대합되는 의치용 레진치의 마모저항성 비교)

  • Lee, Chul-Young;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.313-327
    • /
    • 1999
  • The aim of this study was to compare wear resistance of resin denture teeth opposing various restorative materials. The wear resistance of conventional acrylic resin teeth(Trubyte Biotone) and three high-strength resin teeth(Bioform IPN, Endura, SR-Orthosit-PE) opposing different restorative materials(gold alloys, dental porcelain, composite resin) was compared. Wear tests were conducted with a sliding-induced wear testing apparatus which applied 100,000 strokes to the specimen in a mesio-distal direction under conditions of 100 stroke/min and constant loading of 1Kgf/tooth. Wear resistance of the resin denture teeth was evaluated by the following criteria : 1) wear depth, 2) weight loss, and 3) SEM observation. Results were as follows. 1. When opposed to gold alloys and composite resin, high-strength resin teeth showed superior wear resistance compared to acrylic resin teeth. But, in cases opposing dental porcelain, differences between the wear of the high-strength and acrylic resin teeth were not statistically significant (p<0.05). 2. When comparing wear resistance among high-strength resin teeth, opposing gold alloys, Endura was slightly more resistant and while in cases opposing dental porcelain, SR-Orthosit-PE was showed to be slightly resistant(p<0.05). 3. The wear of high-strength resin teeth was greater by 5 to 7 times when opposing porcelain and 2 to 3 times when opposing composite resin compared to gold alloys(p<0.05). 4. SEM observations of the wear surface showed that wear of resin teeth opposing gold alloys is a fatigue type of wear and wear of resin teeth opposing dental porcelain is fatigue and abrasion type of wear. Trubyte Biotone showed more severe fatigue type of wear than high-strength resin teeth. In conclusion, the use of dental porcelain should seriously be considered as restorative material in cases opposing resin denture teeth and improvement seems to be needed on resin teeth in the areas of wear resistance.

  • PDF

THE EFFECTS OF DENTURE CLEANSERS AND DISINFECTANTS ON THE COLOR, SURFACE HARDNESS, SURFACE ROUGHNESS OF DENTURE BASE RESINS (의치세정제와 소독제가 의치상 레진의 색조, 표면경도, 표면조도에 미치는 영향에 대한 연구)

  • Yang Hee-Jin;Jang Bok-Sook;Chung Dong-June;Heo Seong-Joo;Han Dong-Hoo;Shim June-Sung;Chang Myung-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2001
  • The purpose of this study is to compare effects of denture cleansers and disinfectants on the color. surface hardness, and surface roughness of reinforced acrylic resin using polyhedral oligosilsesquioxane molecules(POSS resin) to those of common resins. According to manufacturer's instructions, 45 specimens were made from three denture resins(Luciton 199, Paladent 20, POSS resin), and polished. Five denture cleansers(distilled water, glutaraldehyde, alkaline hypochlorites, chlorhexidine, alkaline peroxides) in combination with three denture resins were evaluated before and after immersion for 7 days. Color data in $L^*a^*b^*$ system were measured with a colorimeter. Surface hardness data were measured with a microhardness tester. Surface roughness data were measured with a 3-dimensional surface analyzer. Data were analyzed with two-way ANOVA, one-way ANOVA, and t-test. The results were as follows : 1. All resins(Luciton 199, Paladent 20, POSS resin) showed significant differences in color after immersion in hypochlorites(p<0.05). 2. POSS resin showed significant differences in color compared with Paladent 20 in all denture cleansers, but no statistically significant differences with Luciton 199(p<0.05). 3. Luciton 199 showed significant differences of surface hardness in chlorhexidine, Paladent 20 showed significant differences in glutaraldehyde and chlorhexidine. POSS resin showed a little change of surface in all denture cleanser, but no statistically significant differences(p<0.05). 4. Luciton 199 and Paladent 20 showed significant differences of surface roughness in hypochlorites and glutaraldehyde, and POSS resin showed no statistically significant differences in all denture cleansers(p<0.05).

  • PDF

Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles

  • Anwander, Melissa;Rosentritt, Martin;Schneider-Feyrer, Sibylle;Hahnel, Sebastian
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.482-485
    • /
    • 2017
  • PURPOSE. This laboratory study aimed to investigate the effect of doping an acrylic denture base resin material with nanoparticles of ZnO, CaO, and $TiO_2$ on biofilm formation. MATERIALS AND METHODS. Standardized specimens of a commercially available cold-curing acrylic denture base resin material were doped with 0.1, 0.2, 0.4, or 0.8 wt% commercially available ZnO, CaO, and $TiO_2$ nanopowder. Energy dispersive X-ray spectroscopy (EDX) was used to identify the availability of the nanoparticles on the surface of the modified specimens. Surface roughness was determined by employing a profilometric approach; biofilm formation was simulated using a monospecies Candida albicans biofilm model and a multispecies biofilm model including C. albicans, Actinomyces naeslundii, and Streptococcus gordonii. Relative viable biomass was determined after 20 hours and 44 hours using a MTT-based approach. RESULTS. No statistically significant disparities were identified among the various materials regarding surface roughness and relative viable biomass. CONCLUSION. The results indicate that doping denture base resin materials with commercially available ZnO, CaO, or $TiO_2$ nanopowders do not inhibit biofilm formation on their surface. Further studies might address the impact of varying particle sizes as well as increasing the fraction of nanoparticles mixed into the acrylic resin matrix.

Research for The Comparing Test of the Fracture Strength According to the Heat Curing Method in the Denture Base Resin (의치상용 열중합 레진의 Curing방법에 따른 파절 강도의 비교실험연구)

  • Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • For this study, self curing resin and heat curing resin used for existing usual resin denture base in the denture industry were chosen by manufacturer. Curing tests for 30-minute, I-hour, 2-hour and 3-hour were conducted to know the strength of the resins and conduct analysis to get other necessary information. The results obtained are as follows: 1. Heat curing resins show a little differences among the manufacturers. However 30-minute curing resin shows great difference as shown in the fracture strength test. 2. The effect from the granularity of the resins on the fracture strength was found insignificant which means there is no difference between coherence and strength. 3. To summarize the results from each time level, the longer the time is, the more the minute cracks on the surface, which is the cause of reduced strength. From this test, it was identified that in making the denture base for patients in dental clinics, 30-minute curing is most efficient and effective in reducing discoloration and monomers, although long-time curing has been considered to be the principal.

  • PDF

각종 의치상재료가 상악총의치의 유지에 미치는 영향에 관한 실험적 연구

  • Lee, Eun-Ho
    • The Journal of the Korean dental association
    • /
    • v.12 no.9
    • /
    • pp.667-677
    • /
    • 1974
  • A testing machine was devised and constructed for the purpose of measuring the retentive forces of maxillary complete denture bases in subjects. Forth complete denture bases were made for ten subjects with three different denture base materials, following the usual denture construction technique. Retentive forces of the forty dentures were determined at seven locations. The tests on each base were repeated three times at intervals of 5 minutes. Differences in retention values were evaluated statistically. 1) Differences in retention values were found by the differences of the denture base materials, but acrylic resin was similar to chromium cobalt alloy. 2) The chromium cobalt alloy and acrylic resin bases from master models revealed the best retention values, the gold alloy base from master model was the poor second and the acrylic resin base from snap model was the third. 3) The retention values for hook-1 revealed higher than that for hook-2 and the retention values for hook-3 revealed the lowest value.

  • PDF