• Title/Summary/Keyword: Denture design

Search Result 141, Processing Time 0.024 seconds

A Digital Approach to a Definitive Immediate Denture: A Clinical Report

  • Lee, Ju-Hyoung;Kim, Hyung Gyun
    • Journal of Korean Dental Science
    • /
    • v.9 no.2
    • /
    • pp.74-80
    • /
    • 2016
  • Even though an immediate denture (ID) is a practical prosthesis, fabricating an ID may be challenging, as unexpected removals of periodontally compromised teeth may occur during an impression procedure. This clinical report introduces a digital approach to a maxillary ID. An intraoral scanner was applied to prevent accidental extraction. A physical cast and a resin pattern of a framework were fabricated with rapid prototyping technology. A proper border and retention was also achieved by an altered cast impression.

Rehabilitation of Partial Edentulism with a Crown-type Implant-assisted Removable Partial Denture through Guided Implant Surgery: A Case Report with a 12-month Follow-up

  • Jun, Ji Hoon;Oh, Kyung Chul;Li, Jiayi;Moon, Hong Seok
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • Crown-type implant-assisted removable partial dentures (CIRPDs) can be a feasible treatment option for partially edentulous patients. Here we report a case with remaining unilateral mandibular teeth. Two implants were placed in the posterior portion of the mandible using a surgical guide, and a distal-extension removable partial denture with implant-supported surveyed crowns was fabricated. After 12 months, both the abutment teeth and implants were in good condition. The treatment outcomes were satisfactory in terms of masticatory function and esthetics. The advantages of CIRPDs and considerations for obtaining successful clinical outcomes with these dentures are also discussed.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

Restoration of IARPD in partially edentulous patients with bone defects due to osteomyelitis treatment (골수염 치료로 인해 골결함이 있는 부분무치악 환자에서 IARPD 수복)

  • Park, Se-Hyun;Sung, Han-Gyul;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.3
    • /
    • pp.359-369
    • /
    • 2021
  • Implant prostheses and removable partial dentures are mainly used as treatment methods for partial edentulous patients who have lost a number of teeth. The implant-assisted removable partial denture (IARPD) is strategically selected. The defect in maxillofacial structure due to osteomyelitis, a type of facial bone infection, causes dysfunction such as mastication, swallowing, and pronunciation, as well as social and psychological effects, so a removable restoration is required to restore the supporting tissue. Design of abutment and partial dentures is an essential factor in the success of treatment. In this case, IARPD, which has superior retention and stability compared to traditional removable partial dentures, can have a good prognosis. In a partial edentulous patient with bone defects due to osteomyelitis treatment, the stability of the denture was secured with IARPD restoration. Moreover, maintenance problem that may occur in the future was minimized by providing an appropriate denture design and occlusal scheme through several provisional restorations. This case can be expected to have a favorable prognosis in the long term.

Complete denture rehabilitation utilizing digital process: A case report (디지털 방식을 활용한 양악 총의치 수복 증례)

  • An, Yoojin;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kwon, Kung-Rock;Kim, Hyeong-Seob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.4
    • /
    • pp.313-319
    • /
    • 2022
  • Complete dentures are one of the most basic treatment methods for the treatment of edentulous patients. The manufacturing process of traditional complete dentures goes through the steps of taking primary impressions, secondary impressions, jaw relation record, trying in wax denture, and final denture insertion. Multiple visits and complex manufacturing procedures are required, and errors may occur in each step. With the development of digital technology, manufacturing steps have been reduced by introducing digital technology to the denture treatment process. In the process of manufacturing dentures by introducing a digital process, a more precise work is possible using Computer-Aided Design, and it is possible to shorten the period of labor and reduce the number of visits. In this case, the anterior teeth arrangement of the patient's existing dentures was transferred to the final dentures using a digital method. After taking impression, try-in dentures were digitally fabricated and tried in the oral cavity to evaluate their retention in the oral cavity. Final dentures were manufactured by milling process. The number of visits was reduced, satisfactory retention and stability of dentures were obtained, and aesthetic recovery was achieved.

SHEAR BOND STRENGTH OF HEAT-CURED DENTURE BASE RESIN TO SURFACE TREATED CO-CR ALLOY WITH DIFFERENT METHODS (코발트-크롬 합금의 표면처리에 따른 열중합형 의치상용 레진과의 전단결합강도)

  • Lee, Sang-Hoon;Hwang, Sun-Hong;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.216-227
    • /
    • 2007
  • Statement of problem: For the long-term success of removable partial dentures, the bonding between metal framework and denture base resin is one of the important factors. To improve bonding between those, macro-mechanical retentive form that is included metal framework design has been generally used. However it has been known that sealing at the interface between metal framework and denture base resin is very weak, because this method uses mechanical bonding. Purpose: Many studies has been made to find a simple method which induces chemical bond, now various bonding system is applied to clinic. In this experiment, shear bond strengths of heat-cured denture base resin to the surface-treated Co-Cr alloy were measured before and after thermocycling. Chemically treated groups with Alloy $Primer^{TM}$, Super-Bond $C&B^{TM}$, and tribochemically treated group with $Rocatec^{TM}$ system were compared to the beadtreated control group. The data were analyzed with two-way ANOVA. Result: 1. Shear bond strength of bead-treated group is highest, and Alloy $Primer^{TM}$ treated group, Super-Bond $C&B^{TM}$ treated group, RocatecTM system treated group were followed. Statistically significant differences were found in each treated group(p<0.05). 2. Surface treatment and thermocycling affected shear bond strength(p<0.05), however there was no interaction between two factors(p>0.05). 3. Shear bond strengths of bead-treated group and Alloy $Primer^{TM}$ treated group showed no statistically significant difference before and after thermocycling(p>0.05), and those of Super-Bond $C&B^{TM}$ treated group and $Rocatec^{TM}$ system treated group showed statistically significant difference after thermocycling(p<0.05).

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

A Digitally Designed All-on-4 Restoration with Screwmentable Concept

  • Park, Koungjin;Han, Jung-Suk;Lee, Jae-Hyun
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.84-91
    • /
    • 2022
  • An all-on-4 restoration allows edentulous patients to use a fixed prosthesis with a minimum number of implants. These implant-supported fixed complete dentures have traditionally been fabricated as screw-retained or cement-retained prostheses. However, it is difficult to passively fit the long-span full-arch prosthesis using the screw-retained type restoration, and predictable retrievability is not obtained with the cement-retained type. This case report describes a prosthesis fabricated using a combination of the two retention types. The screwmentable method allows the implant-supported fixed complete denture to achieve a passive fit at the connection with retrievability. In addition, a framework with an optimized size was designed by using digital dental technology.

Trueness of 3D printed partial denture frameworks: build orientations and support structure density parameters

  • Hussein, Mostafa Omran;Hussein, Lamis Ahmed
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • PURPOSE. The purpose of the study was to assess the influence of build orientations and density of support structures on the trueness of the 3D printed removable partial denture (RPD) frameworks. MATERIALS AND METHODS. A maxillary Kennedy class III and mandibular class I casts were 3D scanned and used to design and produce two 3D virtual models of RPD frameworks. Using digital light processing (DLP) 3D printing, 47 RPD frameworks were fabricated at 3 different build orientations (100, 135 and 150-degree angles) and 2 support structure densities. All frameworks were scanned and 3D compared to the original virtual RPD models by metrology software to check 3D deviations quantitatively and qualitatively. The accuracy data were statistically analyzed using one-way ANOVA for build orientation comparison and independent sample t-test for structure density comparison at (α = .05). Points study analysis targeting RPD components and representative color maps were also studied. RESULTS. The build orientation of 135-degree angle of the maxillary frameworks showed the lowest deviation at the clasp arms of tooth 26 of the 135-degree angle group. The mandibular frameworks with 150-degree angle build orientation showed the least deviation at the rest on tooth 44 and the arm of the I-bar clasp of tooth 45. No significant difference was seen between different support structure densities. CONCLUSION. Build orientation had an influence on the accuracy of the frameworks, especially at a 135-degree angle of maxillary design and 150-degree of mandibular design. The difference in the support's density structure revealed no considerable effect on the accuracy.

Comparison of digitalized fabrication method for interim removable partial denture: case reports (두 가지 프린팅 방식으로 제작한 임시 가철성 의치의 비교: 증례 보고)

  • Yoon-Jeong Shin;Cheong-Hee Lee;Du-Hyeong Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.379-385
    • /
    • 2023
  • With the recent development of digital dentistry, fully digitalized methods for fabricating dentures, using intraoral scans and computer-aided design/computer-aided manufacturing (CAD-CAM), are getting popular. Digital methods have the advantage of simplifying the fabrication process in the clinic and laboratory, supplementing digital data. This case report shows a fully digital fabrication method for interim removable dentures in a patient with anterior tooth loss in which implant placement is impossible or delayed. Interim removable dentures were fabricated using two methods. One method is printing tooth and base parts separately and combining, and the other method is printing the whole denture at one time and coloring on the base part. Afterward, dentures were delivered and adaptation was evaluated using the triple scan technique. The extracted site was scanned intraorally (first scan) and the interim removable denture was digitally scanned both intraorally (second scan) and, after removal extraorally (Third scan). In both method, denture adaptation was shown favorable. We report this case report as both the patient and the operator were satisfied with a simplified process using a fully digital method in the clinic.