• Title/Summary/Keyword: Denture curing methods

Search Result 47, Processing Time 0.022 seconds

Effect of fiber glass on the physical properties of denture base resins (화이버 글라스가 의치상 레진의 기계적 특성에 미치는 영향)

  • Park, Yeon-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the effect of addition of fiber glass on the physical properties of silanized fiber mesh and non silanized mesh of denture base resins. Methods: The denture base resins were used in this study heat curing acrylic resins(Vertex Rs, Lucitone 199, $20{\times}80mm$) and fiber glass(SES, Green B&D co., Ltd, $20{\times}80mm$) were used as reinforcement. The specimens were stored in distilled water at $37{\pm}2^{\circ}C$ for 72 hours before test. Bending strength and tensile strength were measured by an universal testing machine(Instron 4301, Instron Corp.). Penetration distribution on fiber was observed by scanning electron microscopy(JSM 840A, Jeol Ltd). Results: The bending strength and modulus were increased by 30% after adding fiber glass on denture base resins. Tensile strength showed significant increasing by adding fiber glass on denture base resins. Conclusion: In this study, Addition of silanized fiber in denture base resins were improved physical properties. we confirmed the fiber glass possibility of the replacement about conventional materials.

A STUDY REPAIRED JOINT STRENGTH OF COMPLETE DENTURE (의치수리(義齒修理)에 있어 파절접합부(破折接合部)의 조작형태(造作形態)가 의치(義齒)의 결합력(結合力)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee Woo-Hyun;Heo Seong-Joo;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.101-110
    • /
    • 1991
  • The purpose of this study was to compare the repaired joint strength among several edge profiles after denture repair. For this study, eight edge profiles were used for repair methods and five self-curing resin brands were used for repair materials. Break away loads were tested after 1 hr., 24 hrs. and 1 week. Instron was used for testing the transverse strength of repaired specimen. The results were as follows. 1. Repaired joint strength was about 35-65% of that of original specimen. 2. Joint strengths of round, inverse knife, inverse rabbit, lap ogee joint were higher tnan that of traditional simple butt joint 3. Joint strength of the simple butt joint was low significant. 4. Joint strengths after 1 hr. specimen were lower than those of 24 hrs. and 1 week specimens in joint strengths. 5. There were no significant differences between 24 hrs. and 1 week specimens in joint strengths. 6. It look more than 24 hours to gain satisfactory physical property after repairing the fractured denture base when self-curing resin was used for repair.

  • PDF

Evaluation of the physical properties and antibacterial effects on Candida albicans of denture base resin containing silver sulfadiazine (실버 설파다이아진이 첨가된 의치상용 레진의 Candida albicans에 대한 항균평가 및 물성 평가)

  • Yu-Ri Choi;Min-Kyung Kang
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.6
    • /
    • pp.459-466
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the physical properties and antibacterial activity of denture base resin with added silver sulfadiazine. Methods: Specimens were made from self-curing denture base resin and silver sulfadiazine as an inorganic antibacterial agent. For physical evaluation of the specimens, surface roughness, surface hardness, and contact angle were measured. Bacterial growth was assessed by optical densityat 600 nm (OD600) and colony forming units (CFU) measurements to confirm antibacterial activity. Results: There was no significant difference in surface roughness, surface hardness, and contact angle in the experimental group containing silver sulfadiazine compared to the control group. In contrast, the experimental group showed a significant decrease in antibacterial activity compared to the control group in terms of OD value. Analysis of CFU confirmed a significant decrease in colonies in the experimental group compared to the control group. Conclusions: Denture base resin containing silver sulfadiazine, an inorganic antibacterial agent, exhibited enhanced antibacterial activity without physical changes. In conclusion, the use of denture base resin containing inorganic antibacterial agents may be expected in the future.

Spreadability observation of the denture adhesive by the amount of the water (수분함량에 따른 의치접착제의 확장성 관찰)

  • Kim, Jong-Moon;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.17-21
    • /
    • 2015
  • Purpose: In this study, Spreadability of denture adhesive in accordance with the saturation level of saliva, respectively, by using the resin plate and the glass was measured thickness and Spreadability. Methods: Examine the spreadability of denture adhesive in accordance with the saturation level of saliva, respectively, by using the resin plate and the glass was measured thickness and Spreadability. Also, by measuring the adhesive strength according to the amount of saliva, and the edentulous patients using denture adhesive and dry mouth patients attempt to provide clinical information of the denture adhesive. Therefore, by using the relatively low shrinkage cold curing resin, after fabricating specimen of plate form, for 7 days, it was immersed in water. Results: For the control group only denture adhesive, an artificial saliva for the experimental group were injected in $0.1m{\ell}$, $0.2m{\ell}$ and $0.3m{\ell}$ of the denture adhesive on the surface, experimental results of the investigation of the 10 times the tensile bond strength of the specimens in each group was obtained the following results. Conclusion: As the time to pressure increase in the same amount of saliva was found that the amount coming out of the denture adhesive, as the amount of saliva in the same pressure increase coming out of many denture adhesives. And the greater the pressure came out a lot of denture adhesives. Spreadability in measuring saliva contact with $0.1m{\ell}$ and $2m{\ell}$ and $3m{\ell}$ group pressured the diameter of the circular was the denture adhesive is small when compared to the group without adding the pressure of 2kg and 3kg put the saliva. The size of the circle is the same amount of saliva denture adhesive spread more pressure showed a greater increase.

Tensile bond strength of chairside reline resin to denture bases fabricated by subtractive and additive manufacturing (적층가공과 절삭가공으로 제작한 의치상과 직접 첨상용 레진 간의 인장결합강도 비교)

  • Kim, Hyo-Seong;Jung, Ji-Hye;Bae, Ji-Myung;Kim, Jeong-Mi;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.177-184
    • /
    • 2020
  • Purpose: The purpose of this study was to compare and evaluate the tensile bond strength of chairside reline resin to denture base resin fabricated by different methods (subtractive manufacturing, additive manufacturing, and conventional heat-curing). Materials and methods: Denture base specimens were fabricated as cuboid specimens with a width of 25 mm × length 25 mm × height 3 mm by subtractive manufacturing (VITA VIONIC BASE), additive manufacturing (NextDent Base) and conventional heat-curing (Lucitone 199). After storing the specimens in distilled water at 37℃ for 30 days and drying them, they were relined with polyethyl methacrylate (PEMA) chairside reline resin (REBASE II Normal). The subtractive and additive manufacturing groups were set as the experimental group, and the heat-curing group was set as the control group. Ten specimens were prepared for each group. After storing all bound specimens in distilled water at 37℃ for 24 hours, the tensile bond strength between denture bases and chairside reline resin was measured by a universal testing machine at a crosshead speed of 10 mm/min. The fracture pattern of each specimen was analyzed and classified into adhesive failure, cohesive failure, and mixed failure. Tensile bond strength, according to the fabrication method, was analyzed by 1-way ANOVA and Bonferroni's method (α=.05). Results: Mean tensile bond strength of the heat-curing group (2.45 ± 0.39 MPa) and subtractive manufacturing group (2.33 ± 0.39 MPa) had no significant difference (P>.999). The additive manufacturing group showed significantly lower tensile bond strength (1.23 ± 0.36 MPa) compared to the other groups (P<.001). Most specimens of heat-curing and subtractive manufacturing groups had mixed failure, but mixed failure and adhesive failure showed the same frequency in additive manufacturing group. Conclusion: The mean tensile bond strength of the subtractive manufacturing group was not significantly different from the heat-curing group. The additive manufacturing group showed significantly lower mean tensile bond strength than the other two groups.

Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles

  • Anwander, Melissa;Rosentritt, Martin;Schneider-Feyrer, Sibylle;Hahnel, Sebastian
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.482-485
    • /
    • 2017
  • PURPOSE. This laboratory study aimed to investigate the effect of doping an acrylic denture base resin material with nanoparticles of ZnO, CaO, and $TiO_2$ on biofilm formation. MATERIALS AND METHODS. Standardized specimens of a commercially available cold-curing acrylic denture base resin material were doped with 0.1, 0.2, 0.4, or 0.8 wt% commercially available ZnO, CaO, and $TiO_2$ nanopowder. Energy dispersive X-ray spectroscopy (EDX) was used to identify the availability of the nanoparticles on the surface of the modified specimens. Surface roughness was determined by employing a profilometric approach; biofilm formation was simulated using a monospecies Candida albicans biofilm model and a multispecies biofilm model including C. albicans, Actinomyces naeslundii, and Streptococcus gordonii. Relative viable biomass was determined after 20 hours and 44 hours using a MTT-based approach. RESULTS. No statistically significant disparities were identified among the various materials regarding surface roughness and relative viable biomass. CONCLUSION. The results indicate that doping denture base resin materials with commercially available ZnO, CaO, or $TiO_2$ nanopowders do not inhibit biofilm formation on their surface. Further studies might address the impact of varying particle sizes as well as increasing the fraction of nanoparticles mixed into the acrylic resin matrix.

Effect of Surface Treatment on Transverse Strength of Denture Repair When Heat Cured Resin Denture Base is Repaired (열중합(熱重合) 레진의치상(義齒床) 수리시(修理時) 파절면(破折面)에 대한 처리방법(處理方法)이 수리 후 Transverse strength에 미치는 영향(影響))

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 1990
  • The purpose of this study was to investigate the effect of surface tretment on strength of denture repair as influenced by repair resin. Specimens were fabricated from VERTEX heat cured resin. Rectangular specimens($60\times10\times3mm$) were prepared according to the manufacturer's instruction for mixing and packing the resin into molds. Two methods of surface treatment were used and two methods of repair were also tested. The transverse strength of the resin was measured before repair and after repair by AUTOGRAPH testing machine. Six specimens of each category were prepared for testing for a total of 24 specimens. The mean value of the percent of recovery was calculated from the percent of recovery for six specimens. The results were as follows : 1. The mean value of the percent of recovery of each category makes a significant difference statistically one another(p<0.01), and "C" category, chloroform solvent-heat cured resin, has a better effect on repair srength than any other. 2. When no chloroform is used to treat the fractured surface there is no significant difference between the mean values of the percent of recovery influenced by the self curing resin and heat cured resin. But, when chloroform is used there is a significant difference between the two repair resins(p<0.01). 3. When self curing resin repair is used there is no significant difference between repair with and without the surface treatment of chloroform. But, when heat cured resin repair is used the use of chloroform treatment become significant statistically (p<0.01).

  • PDF

A COMPARATIVE STUDY ON THE DIMENSIONAL CHANGE OF THE DIFFERENT DENTURE BASES

  • Kim, Myung-Joo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.712-721
    • /
    • 2006
  • Statement of problem. Acrylic resin is most commonly used for denture bases. However, acrylic resin has week points of volumetric shrinkage during polymerization that reduces denture fit. The expandability of POSS (Polyhedral Oligomeric Silsesquioxane) containing polymer could be expected to reduce the polymerization shrinkage of denture bases and would increase the adaptability of the denture to the tissue. Purpose. The purpose of this study was to compare the dimensional stability in the conventional acrylic resin base, POSS-containing acrylic resin base, and metal bases. Materials and methods. Thirty six maxillary edentulous casts and dentures of different base were fabricated. Tooth movement and tissue contour change of denture after processing (resin curing, deflasking, decasting and finishing without polishing) and immersion in artificial saliva at $37^{\circ}C$ for 1 week and 4 weeks were measured using digital measuring microscope and threedimensional laser scanner. Results. The results were as follows: 1. The conventional resin group showed significant (p<0.01) dimensional change throughout the procedure (processing and immersion in artificial saliva). 2. After processing, the metal group and POSS resin group showed lower linear and 3-dimensional change than conventional resin group (p<0.01). 3. There was no statistically significant linear and 3-dimensional change after immersion for 1 week and 4 weeks in metal and POSS resin group. 4. In all groups, the midline and alveolar ridge crest area presented smaller 3-dimensional change compared with vestibule and posterior palatal seal area after processing and soaking in artificial saliva for 1 week and 4 weeks (p<0.01). Conclusion. In this study, a reinforced acrylic-based resin with POSS showed good dimensional stability.

THE LEVEL OF RESIDUAL MONOMER IN INJECTION MOLDED DENTURE BASE MATERIALS

  • Lee Hyeok-Jae;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.360-368
    • /
    • 2003
  • Statement of Problem: The residual monomer of denture base materials causes hypersensitivity on oral mucosa and intereferes with the mechanical properties of the cured resin. The amount of residual monomer is influenced by materials, curing cycle, processing method, and etc. Purpose: The aim of this study was to investigate the residual methyl methacrylate(MMA) content of injection molded denture base polymer, and to compare this with the self-cured resin and the conventional compression molded heat-cured resin. Materials and Methods: Disc shaped test specimens (50mm in diameter and 3mm thick) were prepared in a conventional flasking technique with gypsum molding. One autopolymerized denture base resins (Vertex Sc. Dentimex. Netherlands) and two heat-cured denture base resins (Vertex RS. Dentimex. Netherlands, Ivocap. Ivoclar Vivadent, USA) were used. The three types of specimens were processed according to the manufacturer's instruction. After polymerization, all specimens were stored in the dark at room temperature for 7 days. There were 10 specimens in each of the test groups. 3-mm twist drills were used to obtain the resin samples and 650mg of the drilled sample were collected for each estimation. Gas chromatography (Agillent 6890 Plus Gas Chromatograph, Agillent Co, USA) was used to determine the residual MMA content of 10 test specimens of each three types of polymer. Results: The residual monomer content of injection molded denture base resins was $1.057{\pm}0.141%$. The residual monomer content of injection molded denture base resins was higher than that of compression molded heat cured resin ($0.867{\pm}0.169%$). However, there was no statistical significant difference between two groups (p>0.01). The level of residual monomer in self cured resin($3.675{\pm}0.791$) was higher than those of injection molded and compression molded heat cured resins (p<0.01). Conclusion: With respect to ISO specification pass / fail test (2.2% mass fraction) of residual monomer, injection molding technique($1.057{\pm}0.141%$) is a clinically useful and safe technique in terms of residual monomer.

Evaluation of fitness according to application of glass fiber reinforcement for lower jaw complete denture (하악 총의치 전용의 유리섬유 보강재 적용에 따른 적합도 비교 분석)

  • Kim, Dong-Yeon;Park, Jin-Young;Bae, So-Yeon;Kang, Hoo-Won;Kim, Ji-hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.201-207
    • /
    • 2018
  • Purpose: The purpose of this study is to evaluate the fitness of lower jaw compete denture with glass fiber. Methods: Lower jaw edentulous model was selected as the master model. Ten study models were produced using Type IV stone(n=10). Lower jaw trial dentures were produced by the wax denture base and artificial teeth. Conventional complete denture (CD) group was fabricated by excluding glass fiber reinforcement (n=5). Glass fiber complete denture (GD) group was fabricated with glass fiber reinforcement (n=5). The lower jaw trial complete denture was invested using a plaster. PMMA resin was injected and curing was performed. The CD and GD groups measured the fit using silicone replica technology. The measured data was verified by t-test. Results: The anterior area of the CD group showed the smallest value. There was a statistically significant difference in the anterior area of the CD group and the GD group (p<0.05), but there was no statistically significant difference in the posterior area (p>0.05). Conclusion : Complete denture with glass fiber showed low fitness and further study is needed to apply it clinically.