• Title/Summary/Keyword: Dental simulation

Search Result 131, Processing Time 0.025 seconds

3D computer-assisted orthognathic surgery (3차원 디지털 시스템을 이용한 턱교정 수술)

  • Kim, Choong Nam;Kimm, Soo Ho;Lim, Ho Kyung;Lee, Eui Seok
    • The Journal of the Korean dental association
    • /
    • v.57 no.2
    • /
    • pp.100-104
    • /
    • 2019
  • Orthognathic surgery is designed to correct problems of the jaw and face and restore facial harmony. The limitations of orthognathic surgery occur at all steps of the surgical workflow: preoperative planning, simulation, and operation. Many studies have shown the accuracy and advantages of 3 dimensional computer-assisted program for orthognathic surgery. The purpose of this paper is to introduce the accuracy of the maxillary repositioning in patients who underwent orthognathic surgery using a 3 dimensional computer assisted surgery program. The reliability of computer guided orthognathic surgery using splint and surgical guide need to be improved further. The 3 dimensional computer assisted analysis seems to be more precise to interpret than two-dimensional analysis. High-precision planning of orthognathic surgery has predictable results. Three-dimensional computer assisted orthognathic surgery has the following advantages : planned surgical movement is possible, splints guide with CAD/CAM technology; and increase predictable results .Computer assisted simulation surgery ensures accuracy during surgery, thereby facilitating predictable results. It may provide solution that enables surgeon to perform planned surgery more accurately.

  • PDF

Application of 3D Simulation Surgery to Orthognathic Aurgery : A Preliminary Case Study

  • Lim, Jung-Hwan;Kim, Hyun-Young;Jung, Young-Soo;Jung, Hwi-Dong
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • The aim of this report is to evaluate accuracy using3D surgical simulationand digitally printedwafer in orthognathic surgery. 22-year-old female was diagnosed with mandibular prognathism and apertognathia based on 3D diagnosis using CT. Digital dentition images were taken by laser scanning from dental cast, and each STL images were integrated into one virtual skull using simulation software. Digitalized intermediate wafer was manufactured using CAD/CAM software and 3D printer, and used to move maxillary segment in real patient. Constructed virtual skull from 1 month postoperative CT scan was superimposedinto simulated virtual model to reveal accuracy. Almost maxillo-mandibular landmarks were placed in simulated position within 1 mm differences except right coronoid process. Thus 3D diagnosis, surgical simulation, and digitalized wafer could be useful method to orthognathic surgery in terms of accuracy.

Association Between Vertebrobasilar Insufficiency and Cervicogenic Headache: Hypothetical Approach Towards Etiopathogenesis of Headache

  • Kaur, Aninditya;Rakesh, N.;Reddy, Sujatha S.;Thomas, Nithin;Nagi, Ravleen;Patil, Deepa Jatti
    • Journal of Oral Medicine and Pain
    • /
    • v.45 no.4
    • /
    • pp.97-109
    • /
    • 2020
  • Purpose: Cervicogenic headache (CGH) is pain referred to the head/ face from the structures in vicinity of upper cervical spinal nerves via trigeminocervical pathway. Ponticulus Posticus (PP) and Elongated Styloid Process (ESP) are anatomical structures that cause compression of vasculature present around upper cervical nerve plexus. Recently, computational fluid dynamics (CFD) has shown to play an essential role in identification of these high-pressure zones in the brain. The aim of this research is to study the association of ESP and PP in patients with CGH and to develop a hypothesis by CFD to analyse vertebrobasilar insufficiency as a contributing factor in occurrence of CGH. Methods: Retrospective analysis of 4500 full skull CBCT scans was done for the presence of partial or complete PP and length of Styloid Process (SP). Research was divided into two phases; In first Preliminary Phase, 150 scans that showed the presence of PP and ESP were analysed, and only 134 patients gave consent to fill the questionnaire containing 96 question items pertaining to symptoms associated with CGH. In the second phase, simulation of Vertebral and Carotid Artery was done using Fluent 14.5 Software and by CFD, pressure distribution on arteries was obtained that helped to identify high pressure regions. Results: Both PP and ESP showed a statistically significant association with CGH (p<0.001). By CFD analysis, both steady and transient phases of simulation showed drop in pressure due to constriction of internal carotid and vertebral artery by ESP and PP respectively and were found to decrease the volume of blood reaching the brain, 0.12 /0.13 mL and 0.06 mL respectively. Conclusions: Our analysis proves ESP and PP as contributing factors towards CGH. Hence for proper diagnosis and management of headache disorders, clinicians should have adequate knowledge about these anatomical structures and their resulting clinical symptoms.

The analysis of cost-effectiveness of implant and conventional fixed dental prosthesis

  • Chun, June Sang;Har, Alix;Lim, Hyun-Pil;Lim, Hoi-Jeong
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • PURPOSE. This study conducted an analysis of cost-effectiveness of the implant and conventional fixed dental prosthesis (CFDP) from a single treatment perspective. MATERIALS AND METHODS. The Markov model for cost-effectiveness analysis of the implant and CFDP was carried out over maximum 50 years. The probabilistic sensitivity analysis was performed by the 10,000 Monte-Carlo simulations, and cost-effectiveness acceptability curves (CEAC) were also presented. The results from meta-analysis studies were used to determine the survival rates and complication rates of the implant and CFDP. Data regarding the cost of each treatment method were collected from University Dental Hospital and Statistics Korea for 2013. Using the results of the patient satisfaction survey study, quality-adjusted prosthesis year (QAPY) of the implant and CFDP strategy was evaluated with annual discount rate. RESULTS. When only the direct cost was considered, implants were more cost-effective when the willingness to pay (WTP) was more than 10,000 won at $10^{th}$ year after the treatment, and more cost-effective regardless of the WTP from $20^{th}$ year after the prosthodontic treatment. When the indirect cost was added to the direct cost, implants were more cost-effective only when the WTP was more than 75,000 won at the $10^{th}$ year after the prosthodontic treatment, more than 35,000 won at the $20^{th}$ year after prosthodontic treatment. CONCLUSION. The CFDP was more cost-effective unless the WTP was more than 75,000 won at the $10^{th}$ year after prosthodontic treatment. But the cost-effectivenss tendency changed from CFDP to implant as time passed.

Design and Evaluation of Osseointegration Analysis System for Dental Implant (치과 임플란트용 골융합 측정기의 설계 및 평가)

  • Lee, Joo-Hee;Kim, Chang-Il;Paik, Jong-Hoo;Cho, Jeong-Ho;Chun, Myoung-Pyo;Jeong, Young-Hun;Lee, Young-Jin;Lee, Jeong-Bae;Lee, Seung-Dae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.188-193
    • /
    • 2011
  • The osseointegration of dental implant is influenced by many factors such as surface geometry, loading and the amount of bone. Thus, stability of the dental implant should be checked periodically. In order to test the stability of dental implant by using resonance frequency analysis, we designed a structure of transducers and fabricated a piezoelectric devices. Using finite element analysis, the thickness and length of piezoelectric device and transducers were tailorized and the optimized frequency of 10 kHz was obtained. The resonance frequency from simulation analysis and evaluation was estimated to be similar as 10 kHz. The osseointegration was further enhanced with increasing frequency from the evaluation result of the finite element analysis.

Cinnamic acid derivatives as potential matrix metalloproteinase-9 inhibitors: molecular docking and dynamics simulations

  • Mohammad Hossein Malekipour;Farzaneh Shirani;Shadi Moradi;Amir Taherkhani
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.9.1-9.13
    • /
    • 2023
  • Matrix metalloproteinase-9 (MMP-9) is a zinc and calcium-dependent proteolytic enzyme involved in extracellular matrix degradation. Overexpression of MMP-9 has been confirmed in several disorders, including cancers, Alzheimer's disease, autoimmune diseases, cardiovascular diseases, and dental caries. Therefore, MMP-9 inhibition is recommended as a therapeutic strategy for combating various diseases. Cinnamic acid derivatives have shown therapeutic effects in different cancers, Alzheimer's disease, cardiovascular diseases, and dental caries. A computational drug discovery approach was performed to evaluate the binding affinity of selected cinnamic acid derivatives to the MMP-9 active site. The stability of docked poses for top-ranked compounds was also examined. Twelve herbal cinnamic acid derivatives were tested for possible MMP-9 inhibition using the AutoDock 4.0 tool. The stability of the docked poses for the most potent MMP-9 inhibitors was assessed by molecular dynamics (MD) in 10 nanosecond simulations. Interactions between the best MMP-9 inhibitors in this study and residues incorporated in the MMP-9 active site were studied before and after MD simulations. Cynarin, chlorogenic acid, and rosmarinic acid revealed a considerable binding affinity to the MMP-9 catalytic domain (ΔGbinding < -10 kcal/ mol). The inhibition constant value for cynarin and chlorogenic acid were calculated at the picomolar scale and assigned as the most potent MMP-9 inhibitor from the cinnamic acid derivatives. The root-mean-square deviations for cynarin and chlorogenic acid were below 2 Å in the 10 ns simulation. Cynarin, chlorogenic acid, and rosmarinic acid might be considered drug candidates for MMP-9 inhibition.

A simple technique for repositioning of the mandible by a surgical guide prepared using a three-dimensional model after segmental mandibulectomy

  • Funayama, Akinori;Kojima, Taku;Yoshizawa, Michiko;Mikami, Toshihiko;Kanemaru, Shohei;Niimi, Kanae;Oda, Yohei;Kato, Yusuke;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.16.1-16.6
    • /
    • 2017
  • Background: Mandibular reconstruction is performed after segmental mandibulectomy, and precise repositioning of the condylar head in the temporomandibular fossa is essential for maintaining preoperative occlusion. Methods: In cases without involvement of soft tissue around the mandibular bone, the autopolymer resin in a soft state is pressed against the lower border of the mandible and buccal and lingual sides of the 3D model on the excised side. After hardening, it is shaved with a carbide bar to make the proximal and distal parts parallel to the resected surface in order to determine the direction of mandibular resection. On the other hand, in cases that require resection of soft tissue around the mandible such as cases of a malignant tumor, right and left mandibular rami of the 3D model are connected with the autopolymer resin to keep the preoperative position between proximal and distal segments before surgical simulation. The device is made to fit the lower border of the anterior mandible and the posterior border of the mandibular ramus. The device has a U-shaped handle so that adaptation of the device will not interfere with the soft tissue to be removed and has holes to be fixed on the mandible with screws. Results: We successfully performed the planned accurate segmental mandibulectomy and the precise repositioning of the condylar head by the device. Conclusions: The present technique and device that we developed proved to be simple and useful for restoring the preoperative condylar head positioning in the temporomandibular fossa and the precise resection of the mandible.

Design Optimization of Dental Implants Using Finite Element Analysis for Injecting Bioactive Materials

  • Lee, Kang-Soo;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.292-297
    • /
    • 2012
  • In order to improve osseointegration of dental implants with bone we studied an implant with holes inside its body to deliver bioactive materials based on a proposed patent. Bioactive materials can be selectively applied through holes to a patient according to diagnosis and the integration progress. After the bioactive material is applied, bone can grow into the holes to increase implant bonding and also enhance surface integration. In order to improve the concept and study the effect of bioactive material injection on implant integration, design optimization and integration research were undertaken utilizing the finite element method. A 2-dimensional simulation study showed that when bone grew into the holes after the bioactive material was injected, stress vertically distributed in the upper part of the implant was relieved and mild stress appeared at the opening of the injection holes. This confirmed the effect of the bioactive material and the contribution of the injection holes, but the maximum stress increased ten-fold at the opening. In order to reduce the maximum stress, the size, location, and the number of holes were varied and the effects were studied. When bioactive materials formed an interface layer between the implant and the mandible and four holes were filled with cortical and cancellous bones all the stress concentrated opposite to the loading side without holes disappeared. The stresses at the four outlets of the holes was mildly elevated but the maximum stress value was ten-fold greater compared to the case without the bioactive material.

The Optimization of an Operating Dental LED Light Source Module (치과 수술용 LED 광원모듈의 최적화)

  • Jung, Yeon-Oh;Hong, Gi-Tae;Kim, Jae-Yeol;Kim, Sung-Hyun;An, Young-Jin;Han, Jae-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.452-457
    • /
    • 2011
  • The internal temperature of an operating room had to keep within $20^{\circ}C$. However, the doctor who is wearing operating gown and mask caused to rise temperature because of the thermal occurrence of dental LED light source. At first, the surgery environment is getting worse. And then last, it would increase bleeding rate by the expansion of patient's exposured blood vessel. A surgical operator can distribute the patient's tissue through such surgery environment, exactly. It can do accurate surgery. So, it gave to effect that surgical operator's eye condition is getting better and it could keep a mutual assistance system. For this research, we develop the LED dental light source module of high color rendition. It performed simulation for replacing established the method of Halogen lamp and Plazma lamp of light source. We analyzed intensity of illumination and the change of viability by changing the height of light source module.

STRESS ANALYSIS WITH NONLINEAR MODELLING OF THE LOAD TRANSFER CHARACTERISTICS ACROSS THE OSSEOINTEGRATED INTERFACES OF DENTAL IMPLANT

  • Lee Seung-Hwan;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.3
    • /
    • pp.267-279
    • /
    • 2004
  • A modelling scheme for the stress analysis taking into account load transfer characteristics of the osseointegrated interfaces between dental implant and surrounding alveolar bone was investigated. Main aim was to develop a more realistic simulation methodology for the load transfer at the interfaces than the prefect bonding assumption at the interfaces which might end up the reduced level in the stress result. In the present study, characteristics of osseointegrated bone/implant interfaces was modelled with material nonlinearity assumption. Bones at the interface were given different stiffness properties as functions of stresses. Six different models, i.e. tens0, tens20, tens40, tens60, tens80, and tens100 of which the tensile moduli of the bones forming the bone/implant interfaces were specified from 0, 20, 40, 60, 80, and 100 percents, respectively, of the compressive modulus were analysed. Comparisons between each model were made to study the effect of the tensile load carrying abilities, i.e. the effectivity of load transfer, of interfacial bones on the stress distribution. Results of the present study showed significant differences in the bone stresses across the interfaces. The peak stresses, however, were virtually the same regardless of the difference in the effectivity of load transfer, indicating the conventional linear modelling scheme which assumes perfect bonding at the bone/implant interface can be used without causing significant errors in the stress levels.