• 제목/요약/키워드: Dental pulp cell

검색결과 102건 처리시간 0.03초

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

Establishing Three-Dimensional Explant Culture of Human Dental Pulp Tissue

  • Eun Jin Seo;Soyoung Park;Eungyung Lee;Yang Hoon Huh;Ye Eun Ha;Gabor J. Tigyi;Taesung Jeong;Il Ho Jang;Jonghyun Shin
    • International Journal of Stem Cells
    • /
    • 제17권3호
    • /
    • pp.330-336
    • /
    • 2024
  • Mesenchymal stem cells in the dental tissue indicate a disposition for differentiation into diverse dental lineages and contain enormous potential as the important means for regenerative medicine in dentistry. Among various dental tissues, the dental pulp contains stem cells, progenitor cells and odontoblasts for maintaining dentin homeostasis. The conventional culture of stem cells holds a limit as the living tissue constitutes the three-dimensional (3D) structure. Recent development in the organoid cultures have successfully recapitulated 3D structure and advanced to the assembling of different types. In the current study, the protocol for 3D explant culture of the human dental pulp tissue has been established by adopting the organoid culture. After isolating dental pulp from human tooth, the intact tissue was placed between two layers for Matrigel with addition of the culture medium. The reticular outgrowth of pre-odontoblast layer continued for a month and the random accumulation of dentin was observed near the end. Electron microscopy showed the cellular organization and in situ development of dentin, and immunohistochemistry exhibited the expression of odontoblast and stem cell markers in the outgrowth area. Three-dimensional explant culture of human dental pulp will provide a novel platform for understanding stem cell biology inside the tooth and developing the regenerative medicine.

영구치 치수 기질세포를 이용한 연골 분화 및 분화 시기에 따른 형태학적 변화 (Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells)

  • 정주령;김하나;박열;김민정;오영주;신수정;최윤정;김경호
    • Restorative Dentistry and Endodontics
    • /
    • 제37권1호
    • /
    • pp.34-40
    • /
    • 2012
  • Objectives: The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods: Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results: Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions: Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day) of differentiation.

Increased SOX2 expression in three-dimensional sphere culture of dental pulp stem cells

  • Seo, Eun Jin;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.197-203
    • /
    • 2020
  • Mesenchymal stem cells in the dental pulp exhibit a tendency for differentiation into various dental lineages and hold great potential as a major conduit for regenerative treatment in dentistry. Although they can be readily isolated from teeth, the exact characteristics of these stem cells have not been fully understood so far. When compared to two-dimensional (2D) cultures, three-dimensional (3D) cultures have the advantage of enriching the stem cell population. Hence, 3D-organoid culture and 3D-sphere culture were applied to dental pulp cells in the current study. Although the establishment of the organoid culture proved unsuccessful, the 3D-sphere culture readily initiated the stable generation of cell aggregates, which continued to grow and could be passaged to the second round. Interestingly, a significant increase in SOX2 expression was detected in the 3D-spheroid culture compared to the 2D culture. These results indicate the enrichment of the stemness-high population in the 3D-sphere culture. Thus, 3D-sphere culture may act as a link between the conventional and 3D-organoid cultures and aid in understanding the characteristics of dental pulp stem cells.

Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review

  • Dina A. Hammouda;Alaa M Mansour;Mahmoud A. Saeed;Ahmed R. Zaher;Mohammed E. Grawish
    • Restorative Dentistry and Endodontics
    • /
    • 제48권2호
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

Dental Pulp Stem Cell: A review of factors that influence the therapeutic potential of stem cell isolates

  • Young, Aubrey;Kingsley, Karl
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권2호
    • /
    • pp.61-69
    • /
    • 2015
  • Undifferentiated stem cells are being studied to obtain information on the therapeutic potential of isolates that are produced. Dental Pulp Stem Ccell (DPSC) may provide an abundant supply of highly proliferative, multipotent Mesenchymal Stem Cells (MSC), which are now known to be capable of regenerating a variety of human tissues including bone and other dental structures. Many factors influence DPSC quality and quantity, including the specific methods used to isolate, collect, concentrate, and store these isolates once they are removed. Ancillary factors, such as the choice of media, the selection of early versus late passage cells, and cryopreservation techniques may also influence the differentiation potential and proliferative capacity of DPSC isolates. This literature review concludes that due to the delicate nature of DPSC, more research is needed for dental researchers and clinicians to more fully explore the feasibility and potential for isolating and culturing DPSCs extracted from adult human teeth in order to provide more accurate and informed advice for this newly developing field of regenerative medicine.

Differentiation of CD31-Positive Vascular Endothelial Cells from Organoid Culture of Dental Pulp Stem Cells

  • Seo, Eun Jin;Park, Jae Kyung;Jeong, Hoim;Kang, Jung Sook;Kim, Hyung-Ryong;Jang, Il Ho
    • International Journal of Oral Biology
    • /
    • 제43권2호
    • /
    • pp.77-82
    • /
    • 2018
  • The mesenchymal stem cells (MSCs) that reside in dental tissues hold a great potential for future applications in regenerative dentistry. In this study, we used human dental pulp cells, isolated from the molars (DPCs), in order to establish the organoid culture. DPCs were established after growing pulp cells in an MSC expansion media (MSC-EM). DPCs were subjected to organoid growth media (OGM) in comparison with human dental pulp stem cells (DPSCs). Inside the extracellular matrix in the OGM, the DPCs and DPSCs readily formed vessel-like structures, which were not observed in the MSC-EM. Immunocytochemistry analysis and flow cytometry analysis showed the elevated expression of CD31 in the DPCs and DPSCs cultured in the OGM. These results suggest endothelial cell-prone differentiation of the DPCs and DPSCs in organoid culture condition.

Stimulatory Effect of N-acetylcysteine on Odontoblastic Differentiation

  • Jun, Ji-Hae;Lee, Hye-Lim;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.187-195
    • /
    • 2008
  • Reparative dentine formation requires newly differentiated odontoblast-like cells. Therefore, identification of the molecule that stimulates the odontogenic differentiation of precursor cells in the tooth pulp will be helpful for the development of strategies to repair damaged pulp. In this study, we examined the effect of N-acetylcysteine (NAC) on the odontogenic differentiation of MDPC-23 cells, a mouse odontoblast-like cell line derived from dental papilla, and primary cultured rat dental papilla cells (RDPCs). NAC (1-30 mM) suppressed production of reactive oxygen species in MDPC-23 cells in a dose-dependent manner. Although 5 to 20 mM NAC did not alter MDPC-23 cell proliferation, 1 or 30 mM NAC significantly inhibited it. NAC enhanced mineralized nodule formation and the expression of several odontoblast differentiation-associated genes in both RDPCs and MDPC-23. This NAC stimulatory effect was significant, even at concentrations lower than 1 mM. However, NAC did not stimulate expression of bone morphogenetic protein-2, -4, or -7, which are known to enhance odontogenic differentiation. Since reactive oxygen species are also involved in the pulp toxicity of resin-based restorative materials, these results suggest that NAC may be a promising candidate for supplementation of dental restorative materials in order to enhance reparative dentine formation.

MAPK 경로를 통한 HO-1과 분화 표지자 발현 (MAPK Signal Pathways in Regulation of Odontoblastic Differentiation by Induction of HO-1 in Human Dental Pulp Cells)

  • 김선주
    • 치위생과학회지
    • /
    • 제10권4호
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to examine the MAPK signaling pathways involved in regulation of HO-1 and the odontoblast differentiation markers during the odontoblastic differentiation for HDPCs. We evaluated cell growth by MTT assay and differentiation marker mRNA expression by RT-PCR. When the cells were treated with p38 inhibitor (SB203580, $10{\mu}M$), JNK inhibitor (SP600125, $10{\mu}M$), and ERK inhibitor (PD98059, $20{\mu}M$) for 7 days, cell growth and expression of HO-1 and differentiation makers were significantly decreased in HDPCs. Our results suggest that odontoblastic differentiation is positively regulated by HO-1 induction in HDPCs via ERK, JNK, and p38 signaling pathways. Thus, pharmacological HO-1 induction might represent a potent therapeutic approach for pulp capping and the regeneration of HDPCs.

Cryopreservation of mesenchymal stem cells derived from dental pulp: a systematic review

  • Sabrina Moreira Paes;Yasmine Mendes Pupo;Bruno Cavalini Cavenago;Thiago Fonseca-Silva;Carolina Carvalho de Oliveira Santos
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.26.1-26.15
    • /
    • 2021
  • Objectives: The aim of the present systematic review was to investigate the cryopreservation process of dental pulp mesenchymal stromal cells and whether cryopreservation is effective in promoting cell viability and recovery. Materials and Methods: This systematic review was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the research question was determined using the population, exposure, comparison, and outcomes strategy. Electronic searches were conducted in the PubMed, Cochrane Library, Science Direct, LILACS, and SciELO databases and in the gray literature (dissertations and thesis databases and Google Scholar) for relevant articles published up to March 2019. Clinical trial studies performed with dental pulp of human permanent or primary teeth, containing concrete information regarding the cryopreservation stages, and with cryopreservation performed for a period of at least 1 week were included in this study. Results: The search strategy resulted in the retrieval of 185 publications. After the application of the eligibility criteria, 21 articles were selected for a qualitative analysis. Conclusions: The cryopreservation process must be carried out in 6 stages: tooth disinfection, pulp extraction, cell isolation, cell proliferation, cryopreservation, and thawing. In addition, it can be inferred that the use of dimethyl sulfoxide, programmable freezing, and storage in liquid nitrogen are associated with a high rate of cell viability after thawing and a high rate of cell proliferation in both primary and permanent teeth.