• Title/Summary/Keyword: Dental microscope

Search Result 558, Processing Time 0.025 seconds

The Effect of Cooling method on the Surface Reaction Zone of CP Titanium Casting Body (티타늄 주조체 냉각방법이 표면반응층에 미치는 영향)

  • Moom, Soo;Choi, Seog-Soon;Moon, Il
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • This test is to conduct applied research the reaction area of the Ti-cast metal body which is made use of Dental Phosphate-silica alumina bonded investment material selling at a market, and the cooling method is how to effect on the acicular. The experimentation is as followings, 1. Experimental specimens After invest with Dental Phosphate-silica alumina bonded investment material, the $10{\times}10{\times}1.0mm^3$ wax pattern was casted by Dental high vacuum argon centrifugal casting machine. 2. Test We can analyze SEM/EDS, XRD utilize the fractography(an optical microscope). 3. Conclusion The pure cast metal body constituted of reaction products layer, stability layer and contamination layer. This pure cast have no connection with the cooling condition. The pure Titanium shows difference in a component distribution according to the cooling condition. Through this experimentation we can establish that acicular in the pure Ti-cast metal is consist of Hexagonal structure a=2.9505$\AA$, c=4.6826$\AA$.

  • PDF

Observations of surface roughness of Co-Cr alloys according to grinding time of dental barrel finishing (치과용 바렐연마기의 연마시간에 따른 Co-Cr 합금의 표면거칠기 관찰)

  • Ko, Hyeon-Jeong;Park, Yu-Jin;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.93-98
    • /
    • 2021
  • Purpose: The aim of this study was to observe the surface roughness and surface topography of cobalt-chrome (Co-Cr) alloys with grinding time in dental barrel finishing. Methods: This study involved two types of Co-Cr alloys. Specimens were manufactured with the dimensions 10×10×2 mm. Each specimen was cast according to the manufacturer's instructions. The cast alloys were polished for 35 minutes at intervals of five minutes in an automatic barrel finishing. Specimens were imaged with a three-dimensional optical microscope to measure surface roughness. Results: BC specimens and GM specimens had the highest roughness (Ra) values in the ungrained control group, and the lowest Ra values were measured 20 minutes after grinding. Conclusion: The best conditions for grinding Co-Cr alloy using a dental barrel finishing were a weight ratio of polishing media, water, and compound of 150 g:200 g:5 g, and a rotation speed of 450 rpm. Grinding time to obtain appropriate surface roughness should be limited to 15 to 30 minutes.

Comparison of the optical properties of pre-colored dental monolithic zirconia ceramics sintered in a conventional furnace versus a microwave oven

  • Kim, Hee-Kyung;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.394-401
    • /
    • 2017
  • PURPOSE. The purpose of this study was to compare the optical properties of pre-colored dental monolithic zirconia ceramics of various thicknesses sintered in a microwave and those in a conventional furnace. MATERIALS AND METHODS. A2-shade of pre-colored monolithic zirconia ceramic specimens ($22.0mm{\times}22.0mm$) in 3 thickness groups of 0.5, 1.0, and 1.5 mm were divided into 2 subgroups according to the sintering methods (n=9): microwave and conventional sintering. A spectrophotometer was used to obtain CIELab color coordinates, and translucency parameters and CIEDE2000 color differences (${\Delta}E_{00}$) were measured. The relative amount of monoclinic phase ($X_m$) was estimated with x-ray diffraction. The surface topography was analyzed by atomic force microscope and scanning electron microscope. Statistical analyses were conducted with two-way ANOVA (${\alpha}=.05$). RESULTS. There were small interaction effects on CIE $L^*$, $a^*$, and TP between sintering method and thickness (P<.001): $L^*$ (partial eta squared ${{\eta}_p}^2=0.115$), $a^*$ (${{\eta}_p}^2=0.136$), and TP (${{\eta}_p}^2=0.206$), although higher $b^*$ values were noted for microwave sintering regardless of thickness. Color differences between two sintering methods ranged from 0.52 to 0.96 ${\Delta}E_{00}$ units. The $X_m$ values ranged from 7.03% to 9.89% for conventional sintering, and from 7.31% to 9.17% for microwave sintering. The microwave-sintered specimen demonstrated a smoother surface and a more uniform grain structure compared to the conventionally-sintered specimen. CONCLUSION. With reduced processing time, microwave-sintered pre-colored dental monolithic zirconia ceramics can exhibit similar color perception and translucency to those by conventional sintering.

Convergent Comparison of the Change in Commercial Juices on the Enamel Surface (시판 주스가 법랑질 표면에 미치는 변화에 대한 융복합적 비교)

  • Kim, Yu-Rin;Choi, Yu-Ri;Choi, Mi-Sook;Nam, Seoul-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.153-159
    • /
    • 2021
  • The purpose of this study is to determine the demage of tooth surface changes according to exposure time of commercially available green grape juice and pomegranate juice. Extracted healthy human premolar enamel surfaces were used. Control group immersed in phosphate-buffered saline (PBS) and 10 ml of commercially available green grape juice and pomegranate juice applied experimental group was divided into 7 groups. The pH of the experimental juice was measured, and the change and micrographics of the surface were confirmed through a Scanning Electron Microscope (SEM). It was found that the more the immersion time between the tooth surface and acid juice, such as damage to the tooth surface, has a greater effect on the surface damage. Based on the results of this study, it is necessary to reduce the number of drinking times and retention time in the oral cavity.

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

Surface characteristics of thermally treated titanium surfaces

  • Lee, Yang-Jin;Cui, De-Zhe;Jeon, Ha-Ra;Chung, Hyun-Ju;Park, Yeong-Joon;Kim, Ok-Su;Kim, Young-Joon
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.3
    • /
    • pp.81-87
    • /
    • 2012
  • Purpose: The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods: The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at $300^{\circ}C$ for 30 minutes. Group II: Ti-S was treated at $500^{\circ}C$ for 30 minutes. Group III: Ti-S was treated at $750^{\circ}C$ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results: The titanium dioxide ($TiO_2$) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile $TiO_2$ were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions: Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants.

A study of dental erosion prevention by calcium contents of fermented milk (칼슘함유량에 따른 유산균 발효유의 치아부식증 예방에 대한 연구)

  • Kim, Kyung-Hee;Kim, Da-Eun;Kim, Ae-Ok;Shin, Ae-Ri;Jeong, Seong-Soog;Choi, Choong-Ho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.6
    • /
    • pp.969-981
    • /
    • 2017
  • Objectives: The present study aimed to evaluate the preventive effects of exposure to liquid fermented milk containing various concentrations of added calcium on dental erosion, and to investigate the optimal concentration of calcium effective in reducing dental erosion. Methods: The present study consisted of a total of 6 experimental groups: a mineral water group, a fermented milk with no added calcium (0%) group, and four fermented milk with various concentrations of added calcium (0.1%, 0.5%, 1%, and 2%) groups. Twelve specimens were immersed for 1, 3, 5 and 10 minutes in each experimental drink and the change in surface microhardness was measured. Additionally, the surface was observed using a scanning electron microscope. Results: The difference in surface microhardness before and after 10 minutes of immersion in the experimental drink was the highest in the Ca 0% group, followed by the Ca 0.1%, 0.5%, 1%, 2% group and the mineral water group, in that order. The groups with a calcium concentration of more than 0.5% showed statistically significant differences in surface microhardness compared to the Ca 0% group. In addition, when the surface morphology of enamel was observed under a scanning electron microscope, the results showed that the highest level of surface damage was observed in the Ca 0% group, followed by the Ca 0.1%, 0.5%, 1%, 2% group, in that order. Conclusions:The present study confirms that a higher calcium concentration in fermented milk is associated with a higher possibility of preventing dental erosion. The addition of 0.5% calcium, which is a relatively low concentration, did not completely prevent dental erosion, but significantly inhibited dental erosion compared to fermented milk without any added calcium. Therefore, it is suggested that consumers should be educated and provided with guidance to consider the calcium content when choosing fermented milk.

Corrosion Behavior of Ti-Pd System Alloys by Microstructural changes (Ti-Pd계 합금의 미세조직변화에 따른 부식거동)

  • Cha, Sung-Soo;Kwak, Dong-Ju;Nam, Sang-Yong
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.9-16
    • /
    • 2008
  • The surface microstructural changes, mechanical properties and corrosion resistance of Ti-Pd alloys for dental biomaterials have been investigated. Ti, Ti-Pd alloys were melted in arc furnace and the corrosion resistance of Ti-Pd alloys was evaluated by anodic polarization test. The surface microstructural changes and mechanical properties of Ti-Pd alloys were analysed by scanning electron microscope and Vickers micro-hardness tester. The vickers hardnees of pure Ti improved by addition of Pd but Ti-25Pd alloy showed decreasing compared with Ti-15Pd. And anodic polarization and potentiostatic test were conducted in 5% HCl to quantify the resistance to corrosion with the addition of Pd, There was no significant difference in corrosion resistance between pure Ti, Ti-5Pd and Ti-15Pd alloy. However, Ti-25Pd alloy showed decreasing compared with pure Ti in corrosion resistance. From these results, it was concluded that newly formulated Ti-15Pd experimental alloy have adequate hardness and high corrosion resistance, and this alloy is promising candidate for a successful dental casting alloy.

  • PDF

QUANTITATIVE ANALYSIS OF MINERAL CHANCE IN THE INITIAL CAR10US LESION USING CONFORMAL LASER SCANNING MICROSCOPY (공초점 레이저 주사 현미경을 이용한 법랑질 초기 우식 재광화의 정량적 분석)

  • 차승우;윤태철;박성호;이찬영;금기연
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Dental Caries which has high prevalence rate, accounts for majority of dental diseases. Many treatment and preventive treatment has been developed, thereby reducing the prevalence rate, but in our country, fluoridization has not spread widely yet, so prevention has not been done satisfactorily. When dental caries progresses, irreversible damage of tooth structure occurs. In initial dental caries, demineralizing tooth structure can be remineralized, so restorative treatment is unnecessary. In this study, 20 teeth restored with composite resin without fluoride release were used and divided into two groups. Incipient dental caries were artificially made and demineralization procedure was done for 1 and 2 weeks, for each group. Changes in mineral contents around the margins were analysed with confocal laser scanning microscope. The results were as follow. 1. Both total fluorescence of the lesion and average fluorescence of the lesion of remineralized samples decreased compared to demineralizing state. (p<0.01) 2. Confocal laser scanning microscopy can be used in quantitative analysis of mineral change. In result, confocal laser scanning microscopy can be used in quantitative analysis of mineral change and it could be used in many different fields of dentistry in the future.

  • PDF

Layered structure of sialoliths compared with tonsilloliths and antroliths

  • Buyanbileg Sodnom-Ish;Mi Young Eo;Yun Ju Cho;Mi Hyun Seo;Hyeong-Cheol Yang;Min-Keun Kim;Hoon Myoung;Soung Min Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.50 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Objectives: The aim of this study was to perform a comparative analysis of the ultrastructural and chemical composition of sialoliths, tonsilloliths, and antroliths and to describe their growth pattern. Materials and Methods: We obtained 19 specimens from 18 patients and classified the specimens into three groups: sialolith (A), tonsillolith (B), and antrolith (C). The peripheral, middle, and core regions of the specimens were examined in detail by histology, micro-computed tomography (micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and transmission electron microscopy (TEM). Results: In the micro-CT, group A showed alternating radiodense and radiolucent layers, while group B had a homogeneous structure. Group C specimens revealed a compact homogeneous structure. Histopathologically, group A showed a laminated, teardrop-shaped, globular structure. Group B demonstrated degrees of immature calcification of organic and inorganic materials. In group C, the lesion was not encapsulated and showed a homogeneous lamellar bone structure. SEM revealed that group A showed distinct three layers: a peripheral multilayer zone, intermediate compact zone, and the central nidus area; groups B and C did not show these layers. The main elemental components of sialoliths were O, C, Ca, N, Cu, P, Zn, Si, Zr, F, Na, and Mg. In group B, a small amount of Fe was found in the peripheral region. Group C had a shorter component list: Ca, C, O, P, F, N, Si, Na, and Mg. TEM analysis of group A showed globular structures undergoing intra-vesicular calcification. In group B, bacteria were present in the middle layer. In the outer layer of the group C antrolith, an osteoblastic rimming was observed. Conclusion: Sialoliths had distinct three layers: a peripheral multilayer zone, an intermediate compact zone and the central nidus area, while the tonsillolith and antrolith specimens lacked distinct layers and a core.