DOI QR코드

DOI QR Code

Comparison of the optical properties of pre-colored dental monolithic zirconia ceramics sintered in a conventional furnace versus a microwave oven

  • Kim, Hee-Kyung (Department of Dentistry, Ajou University School of Medicine) ;
  • Kim, Sung-Hun (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2017.07.21
  • Accepted : 2017.09.29
  • Published : 2017.10.31

Abstract

PURPOSE. The purpose of this study was to compare the optical properties of pre-colored dental monolithic zirconia ceramics of various thicknesses sintered in a microwave and those in a conventional furnace. MATERIALS AND METHODS. A2-shade of pre-colored monolithic zirconia ceramic specimens ($22.0mm{\times}22.0mm$) in 3 thickness groups of 0.5, 1.0, and 1.5 mm were divided into 2 subgroups according to the sintering methods (n=9): microwave and conventional sintering. A spectrophotometer was used to obtain CIELab color coordinates, and translucency parameters and CIEDE2000 color differences (${\Delta}E_{00}$) were measured. The relative amount of monoclinic phase ($X_m$) was estimated with x-ray diffraction. The surface topography was analyzed by atomic force microscope and scanning electron microscope. Statistical analyses were conducted with two-way ANOVA (${\alpha}=.05$). RESULTS. There were small interaction effects on CIE $L^*$, $a^*$, and TP between sintering method and thickness (P<.001): $L^*$ (partial eta squared ${{\eta}_p}^2=0.115$), $a^*$ (${{\eta}_p}^2=0.136$), and TP (${{\eta}_p}^2=0.206$), although higher $b^*$ values were noted for microwave sintering regardless of thickness. Color differences between two sintering methods ranged from 0.52 to 0.96 ${\Delta}E_{00}$ units. The $X_m$ values ranged from 7.03% to 9.89% for conventional sintering, and from 7.31% to 9.17% for microwave sintering. The microwave-sintered specimen demonstrated a smoother surface and a more uniform grain structure compared to the conventionally-sintered specimen. CONCLUSION. With reduced processing time, microwave-sintered pre-colored dental monolithic zirconia ceramics can exhibit similar color perception and translucency to those by conventional sintering.

Keywords

References

  1. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  2. Chevalier J, Deville S, Munch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 2004;25:5539-45. https://doi.org/10.1016/j.biomaterials.2004.01.002
  3. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74. https://doi.org/10.1007/s00784-012-0692-6
  4. Huang H. Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding. Mater Sci Eng A 2003;345:155-63. https://doi.org/10.1016/S0921-5093(02)00466-5
  5. Sutton W. Microwave processing of ceramic materials. Am Ceram Soc Bull 1989;68:376-86.
  6. Oghbaei M, Miraee O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloys Compd 2010;494:175-89. https://doi.org/10.1016/j.jallcom.2010.01.068
  7. Almazdi AA, Khajah HM, Monaco EA Jr, Kim H. Applying microwave technology to sintering dental zirconia. J Prosthet Dent 2012;108:304-9. https://doi.org/10.1016/S0022-3913(12)60181-4
  8. Nightingale SA, Worner HK, Dunne DP. Microstructural development during the microwave sintering of yttria-zirconia ceramics. J Am Ceram Soc 1997;80:394-400.
  9. Nightingale SA, Dunne DP, Worner HK. Sintering and grain growth of 3 mol% yttria zirconia in a microwave field. J Mater Sci 1996;31:5039-43. https://doi.org/10.1007/BF00355903
  10. Upadhyaya DD, Ghosh A, Dey GK, Prasad R, Suri AK. Microwave sintering of zirconia ceramics. J Mater Sci 2001; 36:4707-10. https://doi.org/10.1023/A:1017966703650
  11. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res 2014;93:1235-42. https://doi.org/10.1177/0022034514553627
  12. Wilson J, Kunz SM. Microwave sintering of partially stabilized zirconia. J Am Ceram Soc 1988;71:C40-1.
  13. Janney MA, Calhoun CL, Kimrey HD. Microwave sintering of solid oxide fuel cell materials: I, zirconia-8 mol% yttria. J Am Ceram Soc 1992;75:341-6. https://doi.org/10.1111/j.1151-2916.1992.tb08184.x
  14. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont 2013;5:161-6. https://doi.org/10.4047/jap.2013.5.2.161
  15. Kim HK, Kim SH. Optical properties of pre-colored dental monolithic zirconia ceramics. J Dent 2016;55:75-81. https://doi.org/10.1016/j.jdent.2016.10.001
  16. Commission Internationale de l'Eclairage (CIE). Colorimetry. Technical report CIE publication no. 15:2004, 3rd ed. Vienna, Austria: Central Bureau of the CIE; 2004.
  17. Luo MR, Cui G, Rigg B. The development of the CIE 2000 color-difference formula: CIEDE2000. Color Res Appl 2001; 26:340-50. https://doi.org/10.1002/col.1049
  18. Johnston WM, Ma T, Kienle BH. Translucency parameter of colorants for maxillofacial prostheses. Int J Prosthodont 1995;8:79-86.
  19. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x
  20. Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 1984;67:C119-21.
  21. Chen IW, Wang XH. Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 2000;404:168-71. https://doi.org/10.1038/35004548
  22. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:e419-24. https://doi.org/10.1016/j.dental.2014.09.003
  23. O YT, Koo JB, Hong KJ, Park JS, Shin DC. Effect of grain size on transmittance and mechanical strength of sintered alumina. Mat Sci Eng A 2004;374:191-5. https://doi.org/10.1016/j.msea.2004.02.015
  24. Ghinea R, Perez MM, Herrera LJ, Rivas MJ, Yebra A, Paravina RD. Color difference thresholds in dental ceramics. J Dent 2010;38:e57-64. https://doi.org/10.1016/j.jdent.2010.07.008
  25. Xu BT, Zhang B, Kang Y, Wang YN, Li Q. Applicability of CIELAB/CIEDE2000 formula in visual color assessments of metal ceramic restorations. J Dent 2012;40:e3-9.
  26. Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, Sakai M, Takahashi H, Tashkandi E, Perez Mdel M. Color difference thresholds in dentistry. J Esthet Restor Dent 2015;27:S1-9. https://doi.org/10.1111/jerd.12149
  27. Perez MM, Ghinea R, Herrera LJ, Ionescu AM, Pomares H, Pulgar R, Paravina RD. Dental ceramics: a CIEDE2000 acceptability thresholds for lightness, chroma and hue differences. J Dent 2011;39:e37-44.
  28. Ozturk O, Uludag B, Usumez A, Sahin V, Celik G. The effect of ceramic thickness and number of firings on the color of two all-ceramic systems. J Prosthet Dent 2008;100:99-106. https://doi.org/10.1016/S0022-3913(08)60156-0
  29. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Narhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater 2015;31:1180-7. https://doi.org/10.1016/j.dental.2015.06.016
  30. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont 2016;8:37-42. https://doi.org/10.4047/jap.2016.8.1.37
  31. Scott HG. Phase relationships in the zirconia-yttria system. J Mater Sci 1975;10:1527-35. https://doi.org/10.1007/BF01031853
  32. Hallmann L, Ulmer P, Wille S, Polonskyi O, Kobel S, Trottenberg T, Bornholdt S, Haase F, Kersten H, Kern M. Effect of surface treatments on the properties and morphological change of dental zirconia. J Prosthet Dent 2016;115: 341-9. https://doi.org/10.1016/j.prosdent.2015.09.007
  33. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x

Cited by

  1. Effect of Different Coloring Procedures on the Aging Behavior of Dental Monolithic Zirconia vol.2018, pp.2314-4939, 2018, https://doi.org/10.1155/2018/2137091
  2. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance vol.7, pp.3, 2017, https://doi.org/10.3390/dj7030090
  3. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review vol.31, pp.5, 2017, https://doi.org/10.1111/jerd.12492
  4. Recent Advances in Color and Whiteness Evaluations in Dentistry vol.1, pp.1, 2019, https://doi.org/10.2174/2542579x01666180719125137
  5. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective vol.39, pp.1, 2017, https://doi.org/10.4012/dmj.2019-098
  6. Strength and aging resistance of monolithic zirconia: an update to current knowledge vol.56, pp.1, 2017, https://doi.org/10.1016/j.jdsr.2019.09.002
  7. Impact of short-term dental dehydration on in-vivo dental color and whiteness vol.105, pp.None, 2017, https://doi.org/10.1016/j.jdent.2020.103560
  8. The number of specimens in a furnace affects the biaxial flexural strength of veneered zirconia specimens after sintering vol.35, pp.6, 2021, https://doi.org/10.1080/01694243.2020.1816790