• Title/Summary/Keyword: Dental Implant Material

Search Result 366, Processing Time 0.025 seconds

THE EFFECTS OF PASTE TYPE CALCIUM SULFATE ON THE PERIODONTAL HEALING OF 3-WALL INTRABONY DEFECTS IN DOGS (성견 3면 골내낭에서 Paste형 Calcium Sulfate 가 치주조직 치유에 미치는 영향)

  • Hyun, Suk-Ju;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.429-455
    • /
    • 2002
  • There are numerous kind of materials and techniques to regenerate the periodontal tissue which has been lost due to destructive periodontal disease, including bone graft material. Many bone graft materials have been reported and among these materials, synthetic material has been developed fin the long time because of its sufficient supply economically. Calcium sulfate which was evaluated as including much calcium, has been used in the clinical field. In the dental field calcium sulfate has been used as bone graft material and Kim reported that improved bone formation and more amount of new attachment after grafting calcium sulfate. but, because calcium sulfate has the problem that it generates the heat in setting period and resolves fast, we need to evaluate the effect of the improved calcium sulfate on periodontal tissue. The present study evaluates the effect of paste type calcium sulfate on the epithelial migration, alveolar bone regeneration, cementum formation and gingival connective tissue attachment in intrabony defect in dogs. Four millimeter deep and four millimeter wide 3-wall defects were surgically created in the mesial or distal aspects of premolars or molars. the test group received paste-type calcium sulfate with a flap procedure and the control group underwent flap procedure only. Histologic analysis after 8 weeks of healing revealed the following results : 1. The length of epithelial growth(the distance from CEJ to the apical end of JE) was 0.52${\pm}$0.26mm in the control and 0.56${\pm}$0.25mm in the test group. there was no statistically significant difference between the two groups. 2. The length of connective tissue adhesion was 1.74${\pm}$1.06mm in the control and 1.28${\pm}$0.57mm in the test group. there was no statistically significant difference between the two groups. 3. The length of new bone was 2.01${\pm}$0.95mm in the control and 2.62${\pm}$0.81mm in the test group. there was no statistically significant difference between the two groups. 4. The length of new cementum was 1.86${\pm}$0.80mm in the control and 2.77${\pm}$ 0.86mm in the test group. there was a statistically significant difference between the two groups.(P<0.01) These results suggest that the use of paste type calcium sulfate in 3-wall intrabony defects has significant effect on new cementum formation , but doesn't have any significant effect on the prevention of junctional epithelium migration and new bone formation. Finally, the paste type calcium sulfate that is used in this study is suggested to be the material that can have a significant effect on the periodontal healing, if its biocompatibility is improved.

Clinical Long-term Assessment of Bioactive Glass Graft (Bioactive glass의 장기 임상적 평가)

  • Lee, Hang-Bin;Baek, Jeong-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Kim, Chong-Kwan;Chai, Choong-Kyoo
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.187-198
    • /
    • 2002
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal disease. To achieve periodontal regeneration, various kinds of methods have been investigated and developed, including guided tissue regeneration and bone graft. Bone graft can be catagorized into autografts, allografts, xenografts, bone substitutes. And materials of all types have different biological activity and the capacity for periodontal regeneration, but ideal graft material has not been developed that fits all the requirement of ideal bone graft material. Recently, bioactive glass that has been utilized in plastic surgery is being investigated for application in dental practice. But, there has not been any long-term assessment of bioactive glass when used in periodontal intrabony defects. The present study evaluates the long-term effects of bioactive glass on the periodontal regeneration in intrabony defects of human and the effect of plaqu control on long term treatment results after dividing patients into those who underwent 3-month regular check-up and those who didn't under go regular check-up The clinical effect on 74sites from 17 infrabony pockets of 11 patients were analyzed 36months after treatment. 51 sites which underwent regular check up were classified as the Follow-up group(F/U group), and 23 sites which did not undergo regular check up were classified as Non Follow-up group(Non F/U group). After comparing the probing depth, attachment loss, bone probing depth before and 36months after treatment, the following results could be concluded. 1. The changes of probing pocket depth showed a statistically significant decrease between after baseline and 36 months after treatment in F/U group(1.79${\pm}$0.68mm) and did no show astatistically significant decrease between after baseline and 36months after treatment in Non F/U group(0.61${\pm}$0.54mm) (P<0.05). 2. The changes of loss of attachment showed a statistically significant decrease between after baseline and 36 months after treatment in F/U group(1.44${\pm}$0.74mm) and did no show astatistically significant decrease between after baseline and 36months after treatment in Non F/U group(1.18${\pm}$1.54) (P<0.05). 3. The changes of bone probing depth showed a statistically significant decrease between after baseline and 36 months after treatment in both F/U(1.35${\pm}$0.28) and Non F/U group(0.78${\pm}$0.55mm) (P<0.05). The results suggest that treatment of infrabony defects with bioactive glass resulted in significan reduction of attachment loss and bone probing depth 36months after the treatment. The use of bioactive glass in infrabony defects, combined with regular check-up and proper plaque control generally shows favorable clinical results. This measn that bioactive glass could be a useful bone substitute.

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method (이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석)

  • Lee, Su-Ok;Choi, Dae-Gyun;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.381-395
    • /
    • 2008
  • Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

Shear Bond Strength of Composite Resin ($TESCERA^{TM}$ ATL) Veneering on Zirconia Surface with Various Surface Treatments (지르코니아의 표면처리 방법에 따른 압축강화형 복합레진 ($TESCERA^{TM}$ ATL)전장의 결합강도)

  • Park, Soo-Jeong;Lee, Richard Sung-Bok;Lee, Suk-Won;Ahn, Su-Jin;Lim, Ho-Nam
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The aim of this study was to evaluate shear bond strength of pressed reinforced composite resin ($TESCERA^{TM}$ ATL) veneering to zirconia with various surface treatments. Forty sintered zirconia specimens and forty pockmarked zirconia specimens were fabricated. All the materials were categorized as Group 1 (Control : porcelain veneering on zirconia surface), Group 2 ( $TESCERA^{TM}$ ATL dentine veneering after bonding agent application on zirconia surface), Group 3 ($TESCERA^{TM}$ ATL dentine veneering on pockmarked zirconia surface), Group 4 ($TESCERA^{TM}$ ATL dentine veneering after bonding agent application on pockmarked zirconia surface), Group 5 (Thermocycling on Group 1), Group 6 (Thermocycling on Group 2), Group 7 (Thermocycling on Group 3), and Group 8 (Thermocycling on Group 4). SBS(Shear bond strength) of 8 groups was determined with an Instron Universal Testing Machine. Also fractured surface of specimens were observed with a scanning electron microscope. There were no significant differences in the initial SBS between Group 1(control group), Group 3, and Group 4. (p>0.05) Group 2 presented the lowest SBS values. There was a no significant difference between just as 24hour water storage and simulated aging on pockmarked zirconia groups. (p>0.05) A formation of pockmarked irregularities on zirconia surface as mechanically pitted surface was reliable method for establishing a stronger bond between $TESCERA^{TM}$ ATL and zirconia-based material.

Fracture resistance of zirconia and resin nano ceramic implant abutments according to thickness after thermocycling (지르코니아와 레진나노세라믹 임플란트 지대주의 두께에 따른 열순환 후 파절저항)

  • Lee, Jung-Won;Cha, Hyun-Suk;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.144-150
    • /
    • 2017
  • Purpose: The aim of this in vitro study is to investigate load bearing capacity of esthetic abutments according to the type of material and wall thickness. Materials and methods: 70 specimens equally divided into seven groups according to their abutment wall thicknesses. The abutments prepared with titanium 0.5 mm wall thickness were used as a control group (Ti-0.5), whereas zirconia abutments and resin nano ceramic abutments with wall thickness 0.5 mm, 0.8 mm and 1.0 mm were prepared as test groups (Zir-0.5, Zir-0.8, Zir-1.0 and RNC-0.5, RNC-0.8, RNC-1.0). All specimens were tested in a universal testing machine to evaluate their resistance to fracture and all of them underwent thermo-cycling before loading test. Mean fracture values of the groups were measured and statistical analyses were made using two-way ANOVA. Results: Zir-1.0 showed the highest mean strength ($2,476.3{\pm}342.0N$) and Zir-0.8 ($1,518{\pm}347.9N$), Ti-0.5 ($1,041.8{\pm}237.2N$), Zir-0.5 ($631.4{\pm}149.0N$) were followed. The strengths of RNC groups were significantly lower compared to other two materials (RNC-1.0 $427.5{\pm}72.1$, RNC-0.8 $297.9{\pm}41.2$) and the strengths of all the test groups decreased as the thickness decreases (P < .01). RNC-0.5 ($127.4{\pm}35.3N$) abutments were weaker than all other groups (P < .05). Conclusion: All tested zirconia abutments have the potential to withstand the physiologic occlusal forces in anterior and posterior regions. In resin nano ceramic abutments, wall thickness more than 0.8 mm showed the possibility of withstanding the occlusal forces in anterior region.

The Bone regenerative effects of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague dawley rats (백서 두개골 결손부에서 항생제를 함유한 키토산 차단막의 골재생 유도 효과)

  • Chae, Gyung-Joon;Kim, Tae-Gyun;Jung, Ui-Won;Lee, Soo-Bok;Jung, Yong-Sik;Lee, Yong-Keun;Kim, Chang-Sung;Chae, Jung-Kiu;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.1019-1037
    • /
    • 2005
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chtin. Chitosan is a derivative of chitin made by deacetylation of side chains. Chitosan has been widely studied as bone substitution and membrane material in periodontology. Many experiments using chitosan in various animal models have proven its beneficial effects. Tetracycline has been considered for use in the treatment of chronic periodontal disease and gingivitis. The aim of this study is to evlauate the osteogenesis of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague Dawley rats. An 8mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into five groups: Untreated control group versus four experimental group. Four types of membranes were made and comparative study was been done. Two types of non-woven membranes were made by immersing non-woven chitosan into either the tetracycline solution or chitosan-tetracycline solution. Other two types of sponge membranes were fabricated by immersing chitosan sponge into the tetracycline solution, and subsequent freeze-drying. The animals were sacrificed at 2 and 8 weeks after surgical procedure. The specimens were examined by histologic analyses. The results are as follows: 1. Clinically the use of tetracycline blended chitosan membrane showed great healing capacity. 2. The new bone formations of all the experimental group, non-woven and sponge type membranes were greater than those of control group. But, there was no significant difference between the experimental groups. 3. Resorption of chitosan membranes were not shown in any groups at 2 weeks and 8 weeks. These results suggest that the use of tetracycline blended chitosan membrane on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself. And it implicate that tetracycline blended chitosan membrane might be useful for guided tissue regeneration.