• 제목/요약/키워드: Dental Implant

검색결과 2,733건 처리시간 0.023초

Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: an in vitro study

  • Lee, Jungwon;Pyo, Se-Wook;Cho, Hyun-Jae;An, Jung-Sub;Lee, Jae-Hyun;Koo, Ki-Tae;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • 제50권1호
    • /
    • pp.56-66
    • /
    • 2020
  • Purpose: A stability-measuring device that utilizes damping capacity analysis (DCA) has recently been introduced in the field of dental implantology. This study aimed to evaluate the sensitivity and reliability of this device by measuring the implant stability of ex vivo samples in comparison with a resonance frequency analysis (RFA) device. Methods: Six implant beds were prepared in porcine ribs using 3 different drilling protocols to simulate various implant stability conditions. Thirty-six pork ribs and 216 bone-level implants measuring 10 mm in height were used. The implant beds were prepared using 1 of the following 3 drilling protocols: 10-mm drilling depth with a 3.5-mm-diameter twist drill, 5-mm drilling depth with a 4.0-mm-diameter twist drill, and 10-mm drilling depth with a 4.0-mm-diameter twist drill. The first 108 implants were external-connection implants 4.0 mm in diameter, while the other 108 implants were internal-connection implants 4.3 mm in diameter. The peak insertion torque (PIT) during implant placement, the stability values obtained with DCA and RFA devices after implant placement, and the peak removal torque (PRT) during implant removal were measured. Results: The intraclass correlation coefficients (ICCs) of the implant stability quotient (ISQ) results obtained using the RFA device at the medial, distal, ventral, and dorsal points were 0.997, 0.994, 0.994, and 0.998, respectively. The ICCs of the implant stability test (IST) results obtained using the DCA device at the corresponding locations were 0.972, 0.975, 0.974, and 0.976, respectively. Logarithmic relationships between PIT and IST, PIT and ISQ, PRT and IST, and PRT and ISQ were observed. The mean absolute difference between the ISQ and IST values on a Bland-Altman plot was -6.76 (-25.05 to 11.53, P<0.05). Conclusions: Within the limits of ex vivo studies, measurements made using the RFA and DCA devices were found to be correlated under a variety of stability conditions.

An assessment of template-guided implant surgery in terms of accuracy and related factors

  • Lee, Jee-Ho;Park, Ji-Man;Kim, Soung-Min;Kim, Myung-Joo;Lee, Jong-Ho;Kim, Myung-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.440-447
    • /
    • 2013
  • PURPOSE. Template-guided implant therapy has developed hand-in-hand with computed tomography (CT) to improve the accuracy of implant surgery and future prosthodontic treatment. In our present study, the accuracy and causative factors for computer-assisted implant surgery were assessed to further validate the stable clinical application of this technique. MATERIALS AND METHODS. A total of 102 implants in 48 patients were included in this study. Implant surgery was performed with a stereolithographic template. Pre- and post-operative CTs were used to compare the planned and placed implants. Accuracy and related factors were statistically analyzed with the Spearman correlation method and the linear mixed model. Differences were considered to be statistically significant at $P{\leq}.05$. RESULTS. The mean errors of computer-assisted implant surgery were 1.09 mm at the coronal center, 1.56 mm at the apical center, and the axis deviation was $3.80^{\circ}$. The coronal and apical errors of the implants were found to be strongly correlated. The errors developed at the coronal center were magnified at the apical center by the fixture length. The case of anterior edentulous area and longer fixtures affected the accuracy of the implant template. CONCLUSION. The control of errors at the coronal center and stabilization of the anterior part of the template are needed for safe implant surgery and future prosthodontic treatment.

적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석 (Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy)

  • 최민호;이일권;김유리;조혜원
    • 구강회복응용과학지
    • /
    • 제22권1호
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

The change of rotational freedom following different insertion torques in three implant systems with implant driver

  • Kwon, Joo-Hyun;Han, Chong-Hyun;Kim, Sun-Jai;Chang, Jae-Seung
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권1호
    • /
    • pp.37-40
    • /
    • 2009
  • STATEMENT OF PROBLEM. Implant drivers are getting popular in clinical dentistry. Unlike to implant systems with external hex connection, implant drivers directly engage the implant/abutment interface. The deformation of the implant/abutment interface can be introduced while placing an implant with its implant driver in clinical situations. PURPOSE. This study evaluated the change of rotational freedom between an implant and its abutment after application of different insertion torques. MATERIAL AND METHODS. Three kinds of internal connection implants were utilized for the current study($4.5{\times}12\;mm$ Xive, $4.3{\times}11.5\;mm$ Inplant Magicgrip, $4.3{\times}12\;mm$ Implantium MF). An EstheticBase, a 2-piece top, a Dual abutment was used for its corresponding implant system. The rotational freedom between an implant and its abutment were measured before and after applying 45, 100 Ncm insertion torque. Repeated measures ANOVA was used for statistical analysis. RESULTS. Under 45 Ncm insertion torque, the rotational freedom between an implant and its abutment was significantly increased in Xive(P = .003). However, no significant change was noted in Inplant Magicgrip and Implantium MF. Under 100 Ncm torque, both in Xive(P = .0005) and Implatium MF(P = .03) resulted in significantly increased rotational freedom between the implant and its abutment. DISCUSSION. The design of the implant/implant driver interface effectively prevented the deformation of implant/abutment interface. Little change was noted in the rotational freedom between an implant and its abutment, even though the insertion torque was far beyond clinical application. CONCLUSIONS. The implant/abutment joint of internally connecting implants were quite stable under insertion torque in clinical situation.

Comparative Analysis between Zirconia Implant and Titanium Implant

  • Hwang, Ho-Jeong;Kim, Seong-Kyun;Lee, Joo-Hee;Heo, Seong-Joo;Koak, Jai-Young;Yoo, Soo-Yeon
    • Journal of Korean Dental Science
    • /
    • 제5권2호
    • /
    • pp.48-53
    • /
    • 2012
  • Various ceramic implant systems made of yttria-stabilized tetragonal zirconia polycystal (Y-TZP) have become commercially available in recent years. A search of the literature was performed to assess the clinical success of dental Y-TZP implants and whether the osseointegration of Y-TZP is comparable to that of titanium, the standard implant material. No controlled clinical studies in humans regarding clinical outcomes or osseointegration could be identified. Clinical data were restricted to case studies and case series. Only 7 animal studies were found. Osseointegration was evaluated at 4 weeks to 24 months after placement in different animal models, sites and under different loading conditions. The mean bone-implant contact percentage was above 60% in almost all experimental groups. In studies that used titanium implants as a control, Y-TZP implants were comparable to or even better than titanium implants. Surface modifications may further improve initial bone healing and resistance to removal torque. Y-TZP implants may have the potential to become an alternative to titanium implants but cannot currently be recommended for routine clinical use, as no long-term clinical data are available.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권3호
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.

Clinical and radiographic evaluations of implants as surveyed crowns for Class I removable partial dentures: A retrospective study

  • Yoo, Soo-Yeon;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.108-121
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate survival rates and marginal bone loss (MBL) of implants in IC-RPDs. MATERIALS AND METHODS. Seventy implants were placed and used as surveyed crowns in 30 RPDs. The survival rates and MBL around implants based on multiple variables, e.g., position, sex, age, opposing dentitions, splinting, type of used retainer, and first year bone loss, were analyzed. Patient reported outcome measures (PROMs) regarding functional/esthetic improvement after IC-RPD treatment, and complications were also inspected. RESULTS. The 100% implant survival rates were observed, and 60 of those implants showed MBL levels less than 1.5 mm. No significant differences in MBL of implants were observed between implant positions (maxilla vs. mandible; P = .341) and type of used retainers (P = .630). The implant MBL of greater than 0.5 mm at 1 year showed significantly higher MBL after that (P < .001). Splinted implant surveyed crowns showed lower MBL in the maxilla (splinted vs. non-splinted; P = .037). There were significant esthetic/functional improvements observed after treatment, but there were no significant differences in esthetic results based on implant position (maxilla vs. mandible). Implants in mandible showed significantly greater improvement in function than implants in the maxilla (P = .002). Prosthetic complication of IC-RPD was not observed frequently. However, 2 abutment teeth among 60 were failed. The bone loss of abutment teeth was lower than MBL of implants in IC-RPDs (P = .001). CONCLUSION. Class I RPD connected to residual teeth and strategically positioned implants as surveyed crowns can be a viable treatment modality.

Comparison of clinical efficacy of ropivacaine and lignocaine with adrenaline for implant surgery anesthesia: a split-mouth randomized controlled clinical trial

  • Kalath, Remya Nath;Kulal, Rithesh;Gopinath, Sharika
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제21권4호
    • /
    • pp.337-344
    • /
    • 2021
  • Background: The primary indication for using long-acting anesthetics in dentistry is extensive dental procedures that require pulpal anesthesia beyond 90 min and management of postoperative pain. Ropivacaine is an amide local anesthetic that is available at various concentrations with inherent vasoconstrictive properties at low concentrations. Ropivacaine has a 75% greater margin of safety than bupivacaine. Ropivacaine can be a good alternative to bupivacaine as a local anesthetic in dental implant surgery as it provides a longer duration of both pulpal and soft tissue anesthesia after mandibular nerve block and lowers CNS and cardiovascular toxicity. This study aimed to evaluate and compare the clinical efficacy of ropivacaine and lignocaine for implant surgery anesthesia. Methods: Fifteen patients with bilateral edentulous sites indicated for implant placement were recruited for this study. Patients aged 20-60 years of both sexes were randomly recruited. Thirty implant placements were performed in the test and control groups using ropivacaine and lignocaine with adrenaline as local anesthetics, respectively. Results: The results were analyzed statistically. The duration of anesthesia was significantly higher in the test group than in the control group. Ropivacaine was found to be superior to lignocaine in terms of the quality of anesthesia. The comparison of mean visual analog scale scores showed ropivacaine to have better anesthetic and analgesic effects than the control group. Conclusion: Ropivacaine 0.75% provides a significantly longer duration of anesthesia than lignocaine 2% with adrenaline. Ropivacaine 0.75% decreased intraoperative and postoperative analgesia compared to lignocaine 2% with adrenaline. Hence, ropivacaine 0.75% can be used as an alternative to lignocaine in implant surgeries and other intraoral surgical procedures that require a longer duration of anesthesia and analgesia.

임상가를 위한 특집 2 - CAD/CAM 시스템을 이용한 Custom abutment의 제작 (Fabrication of custom abutment using dental CAD/CAM system)

  • 김형섭
    • 대한치과의사협회지
    • /
    • 제50권3호
    • /
    • pp.118-125
    • /
    • 2012
  • CAD/CAM systems (computer-aided design / computer-aided manufacturing) used for decades in restorative dentistry have its application to implant dentistry. This study aimed to overview CAD/CAM systems used implant dentistry, especially emphasizing custom implant abutments manufacturing. CAD/CAM custom abutments present the advantages of being specific to each patient and providing a better fit than the stock and cast custom abutments. This cutting edge technology of virtual-designed and computer-milled implant abutments will likely replace traditional implant restorative protocols and become the standard for implant dentistry in the foreseeable future.

치조제가 심하게 흡수된 하악 무치악환자의 나사-시멘트 유지형 임플란트 보철 수복증례 (Screw and cement retained implant prosthesis rehabilitation of mandibular edentulous patients with severely absorbed ridge)

  • 임중재
    • 대한치과기공학회지
    • /
    • 제41권2호
    • /
    • pp.149-156
    • /
    • 2019
  • Purpose: Prosthodontics for edentulous patients is a treatment technique using implant, which has impactful results in retention and support effects. Methods: As a retention technique, SCRP (screw and cement retained implant prosthesis) has reported in many studies as a beneficial method for both patients and curers, which can reduce errors in process of making abutment and top implant. Results: Prosthesis manufacturing, as polymerization method of hardened resin teeth with thermoplastic resin, is helpful for patients with aesthetic and financial situations regarding residual ridge and interocclusal relationship, also indicates reliable results in both retention and care. Conclusion: Using SCRP technique, we notably obtained a clinical and aesthetic outcome from five implants in anterior tooth, which are half fixable and detachable implants on screw of implant abutment by the technicians at anytime.