• Title/Summary/Keyword: Dental Composite

Search Result 684, Processing Time 0.03 seconds

A STUDY OF SHEAR BOND STRENGTH AND FAILURE PATTERNS IN LIGHT-AND SELF-CURED ORTHODONTIC RESIN (교정용 광중합형 및 화학중합형 레진접착제의 전단결합강도와 파절양상에 대한 연구)

  • Lee, Min-Ha;Yang, Kyu-Ho;Park, Yeong-Joon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.549-558
    • /
    • 1996
  • Light-cured orthodontic composite resin has been widely advertised recently for use in bonding brackets. However, the curability of light-cured resin when light waves are diffused through metal brackets in questionable. The purposes of this study were to evaluate shear bond strength and failure patterns of visible light-cured resin(Lightbond) and chemically cured-resin(Mono-Lok 2), and to determine the relative value of light-cured resin as an alternative to conventional chemically cured resin. Each of the two resins was tested on twenty extracted human first premolars. Standard edgewise metal brackets were bonded to the teeth in accordance with the manufacturers' recommendation. After bonding, the teeth were stored for 24 hours at $37^{\circ}C$, 100% humidity. The shear bond strength was tested with a universal testing machine(Instron 4302), at 0.5mm/min crosshead speed. After debonding, brackets and enamel surfaces were examined with a scanning electron microscope and a stereoscopic microscope. The results were as follows : 1. Metal brackets bonded with Lightbond showed statistically higher shear bond strength than metal brackets bonded with Mono-Lok2. 2. The predominant failure site in Lightbond was the enamel-resin interface, and in Mono-Lok 2 it was the resin itself. 3. Enamel cracks were not found in any specimen. The above results suggest that direct bonding of metal brackets to enamel with light-cured resin bonding agent can be used effectively in clinics.

  • PDF

Clinical Application of Great Saphenous Vein Graft in the Oral and Maxillofacial Reconstruction (구강악안면 재건을 위한 대복재정맥의 유용성)

  • Park, Jung-Min;Kim, Soung-Min;Seo, Mi-Hyun;Kang, Ji-Young;Myoung, Hoon;Lee, Jong-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2012
  • Microvascular reconstruction, in the oral and maxillofacial regions, is a widely accepted as the best way to overcome the complex oral cavity defects. Many patients requiring composite reconstructions have been treated previously with radiation therapy, chemotherapy, selective and/or functional neck dissection or any of these combinations. In many cases of these patients, inadequate neck vessels for the microanastomosis of free flap are available, due to a lack of recipient vessels in the neck, poor vessel quality or vessel caliber mismatch. To achieve a tension-free anastomosis, vein grafting must be considered to span the vessel gap between the free flap pedicle and the recipient neck vessels. Although most microsurgeons believed that interpositional grafts are to be avoided due to vessel thrombosis and increased number of necessary microanastomosis, we, authors have some confidence of equivalency between reconstruction with and without interpositional saphenous vein graft. The great saphenous vein, also known as the long saphenous vein, is the large subcutaneous superficial vein of the leg and thigh. It joins with the femoral vein in the region of femoral triangle at the saphenofemoral junction, and coursed medially to lie on the anterior surface of the thigh before entering an opening in the fascia lata, called the saphenous opening. For a better understanding of the great saphenous vein graft for the interpositional vessel graft in the oral cavity reconstructions, and an avoidance of any uneventful complications during these procedures, the related surgical anatomies with their harvesting tips are summarized in this review article in the Korean language.

Color stability of laboratory glass-fiber-reinforced plastics for esthetic orthodontic wires

  • Inami, Toshihiro;Tanimoto, Yasuhiro;Minami, Naomi;Yamaguchi, Masaru;Kasai, Kazutaka
    • The korean journal of orthodontics
    • /
    • v.45 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • Objective: In our previous study, glass-fiber-reinforced plastics (GFRPs) made from polycarbonate and glass fibers were prepared for esthetic orthodontic wires using pultrusion. These laboratory GFRP wires are more transparent than the commercially available nickel-titanium wire; however, an investigation of the color stability of GFRP during orthodontic treatment is needed. Accordingly, in the present study, the color stability of GFRP was assessed using colorimetry. Methods: Preparation of GFRP esthetic round wires (diameter: 0.45 mm [0.018 inch]) using pultrusion was described previously. Here, to investigate how the diameter of fiber reinforcement affects color stability, GFRPs were prepared by incorporating either $13-{\mu}m$ (GFRP-13) or $7-{\mu}m$ glass (GFRP-7) fibers. The color changes of GFRPs after 24 h, and following 1, 2, and 4 weeks of coffee immersion at $37^{\circ}C$, were measured by colorimetry. We evaluated the color stability of GFRPs by two evaluating units: the color difference (${\Delta}E^*$) and National Bureau of Standards (NBS). Results: After immersion, both GFRPs showed almost no visible color change. According to the colorimetry measurements, the ${\Delta}E^*$ values of GFRP-13 and GFRP-7 were 0.73-1.16, and 0.62-1.10, respectively. In accordance with NBS units, both GFRPs showed "slight" color changes. As a result, there were no significant differences in the ${\Delta}E^*$ values or NBS units for GFRP-13 or GFRP-7. Moreover, for both GFRPs, no significant differences were observed in any of the immersion periods. Conclusions: Our findings suggest that the GFRPs will maintain high color stability during orthodontic treatment, and are an attractive prospect as esthetic orthodontic wires.

TENSILE BOND STRENGTH OF FOUR PORCELAIN REPAIR SYSTEMS (파절된 도재면에 대한 수종의 도재 수리 시스템의 인장결합강도)

  • Jeon Young-A;Yang Byung-Duk;Lee Ho-Jin;Park Ju-Mi;Song Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • Statement of problem. Dental ceramics exhibit excellent esthetic property, compressive strength, chemical durability biocompatibility and translucency. However, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. Purpose. This study is to compare the tensile bond strength of four commonly used porcelain repair systems (Vivadent, Bisco, Ulttadent, Voco) and to insure the best system for the clinical application to the fractured porcelain. Materials and methods. A total of fifty specimens were fabricated. Specimens were stored in $37^{\circ}C$ distilled water for 7 days and thermocycling was performed(1000 cycles), and subjected to a tensile force parallel to the repair resin and porcelain interface by use of an Universal Testing Machine. Result. 1. Voco showed the highest tensile bond strength. In decreasing order, the tensile bond strength of the other materials was as follows : Ultradent, Bisco, Vivadent. 2. There was a statistically significant difference between the porcelain repair systems(Voco, Ultradent > Bisco, Yivadent) (p<0.05). 3. SEM examination of prepared porcelain surfaces revealed that the surface treated with Voco showed brittle fracture. However, Ultradent, Bisco and Vivadent showed ductile fracture. 4. All specimens treated with four porcelain repair systems showed adhesive failure between porcelain and composite resin.

Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

  • de Sousa, Jose Aginaldo Junior;Carregosa Santana, Marcia Luciana;de Figueiredo, Fabricio Eneas Diniz;Faria-e-Silva, Andre Luis
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.202-208
    • /
    • 2015
  • Objectives: This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods:Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (${\alpha}=0.05$). Results: Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05), while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05). Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Conclusions: Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique.

THE EFFECT OF ADDITIONAL ENAMEL ETCHING ON MICROLEAKAGE OF THE ADHESION OF SELF-ETCHING PRIMER SYSTEM (자가 산부식 프라이머 시스템 사용시 인산에 의한 부가적인 산부식이 미세누출에 미치는 영향)

  • Yoon, Jung-Jin;Min, Kyung-San;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.363-368
    • /
    • 2003
  • The purpose of this study is to evaluate the effect of additional enamel etching with phosphoric acid on the microleakage of the adhesion of self-etching primer system. Class V cavity($4mm{\times}3mm{\times}1.5mm$) preparations with all margins in enamel were prepared on buccal surface of 42 extracted human upper central incisor teeth. Prepared teeth were randomly divided into 3 groups. Group 1:no additional pretreatment with 37% phosphoric acid (NE). Group 2:additional pretreatment with 37% phosphoric acid for 10 seconds (E10s). Group 3:additional pretreatment with 37% phosphoric acid for 20 seconds (E20s). The adhesives(Clearfil SE $Bond^{\circledR}$, Kuraray, Osaka, Japan) and composite resins(Clearfil $AP-X^{\circledR}$, Osaka, Kuraray, Japan) were applied following the manufacturer's instructions. All the specimens were finished with the polishing disc(3M dental product, St Paul, MN, USA), thermocycled for 500 cycles between $5^{\circ}C$ and $55^{\circ}C$ and resected apical 3-mm root. 0.028 stainless steel wire was inserted apically into the pulp chamber of each tooth and sealed into position with sticky wax. Surrounding tooth surface was covered with a nail varnish 2 times except areas 1mm far from all the margins. After drying for one day, soaked the samples in the distilled water. Microleakage was assessed by electrochemical method(System 6514, $Electrometer^{\circledR}$), Keithley, USA) in the distilled water. In this study, the microleakage was the lowest in group 1 (NE) and the highest in group 3(E20s)(NE

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

Effect of resin thickness on the microhardness and optical properties of bulk-fill resin composites

  • Kim, Eun-Ha;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.2
    • /
    • pp.128-135
    • /
    • 2015
  • Objectives: This study evaluated the effects of the resin thickness on the microhardness and optical properties of bulk-fill resin composites. Materials and Methods: Four bulk-fill (Venus Bulk Fill, Heraeus Kulzer; SDR, Dentsply Caulk; Tetric N-Ceram Bulk Fill, Ivoclar vivadent; SonicFill, Kerr) and two regular resin composites (Charisma flow, Heraeus Kulzer; Tetric N-Ceram, Ivoclar vivadent) were used. Sixty acrylic cylindrical molds were prepared for each thickness (2, 3 and 4 mm). The molds were divided into six groups for resin composites. The microhardness was measured on the top and bottom surfaces, and the colors were measured using Commission Internationale d'Eclairage (CIE) $L^*a^*b^*$ system. Color differences according to the thickness and translucency parameters and the correlations between the microhardness and translucency parameter were analyzed. The microhardness and color differences were analyzed by ANOVA and Scheffe's post hoc test, and a student t-test, respectively. The level of significance was set to ${\alpha}=0.05$. Results: The microhardness decreased with increasing resin thickness. The bulk-fill resin composites showed a bottom/top hardness ratio of almost 80% or more in 4 mm thick specimens. The highest translucency parameter was observed in Venus Bulk Fill. All resin composites used in this study except for Venus Bulk Fill showed linear correlations between the microhardness and translucency parameter according to the thickness. Conclusions: Within the limitations of this study, the bulk-fill resin composites used in this study can be placed and cured properly in the 4 mm bulk.

Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

  • Ahn, Joonghee;Jung, Kyoung-Hwa;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods: Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results: In GB, XV and SE ($pH{\leq}2$), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions: The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin.

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub;Kharnoob, Majid M.;Akhmadeev, Ravil;Sevbitov, Andrei;Jalil, Abduladheem Turki;Kadhim, Mustafa M.;Hansh, Zahra J.;Mustafa, Yasser Fakri;Akhmadullina, Irina
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.551-561
    • /
    • 2022
  • In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.