• Title/Summary/Keyword: Density of Vehicular

Search Result 47, Processing Time 0.024 seconds

A Statistical Analysis of the Characteristics of Traffic Flow on the Road (도로교통류(道路交通流) 특성(特性)에 관한 통계해석(統計解析))

  • Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.145-159
    • /
    • 1985
  • An understanding of interrelationships among basic characteristics of vehicular traffic flow, such as volum, speed, headtime, and density, is of prime importance. Similarly in providing proper level of servicebility in the field of base of design and traffic control, it is deeply connected. After all, with a view to improve traffic flow characteristics, future efforts about the mutual function development between rod and traffic should be made on the basis of present traffic characteristics. This paper figures out some traffic characteristics from field data and provides proper model of equation to estimate traffic volume on the road.

  • PDF

Performance of Zoysia spp. and Axonopus compressus Turf on Turf-Paver Complex under Simulated Traffic

  • Chin, Siew-Wai;Ow, Lai-Fern
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Vehicular traffic on turf results in loss of green cover due to direct tearing of shoots and indirect long-term soil compaction. Protection of turfgrass crowns from wear could increase the ability of turf to recover from heavy traffic. Plastic turfpavers have been installed in trafficked areas to reduce soil compaction and to protect turfgrass crowns from wear. The objectives of this study were to evaluate traffic performance of turfgrasses (Zoysia matrella and Axonopus compressus) and soil mixture (high, medium and low sand mix) combinations on turf-paver complex. The traffic performance of turf and recovery was evaluated based on percent green cover determined by digital image analysis and spectral reflectance responses by NDVI-meter. Bulk density cores indicated significant increase in soil compaction from medium and low sand mixtures compared to high sand mixture. Higher reduction of percent green cover was observed from A. compressus (30-40%) than Z. matrella (10-20%) across soil mixtures. Both turf species displayed higher wear tolerance when established on higher sand (>50% sand) than low sand mixture. Positive turf recovery was also supported by complementary spectral responses. Establishment of Zoysia matrella turf on turfpaver complex using high sand mixture will result in improved wear tolerance.

A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구)

  • Park, Cheol-Woong;Oh, Jin-Woo;Kim, Hong-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

A New Traffic Congestion Detection and Quantification Method Based on Comprehensive Fuzzy Assessment in VANET

  • Rui, Lanlan;Zhang, Yao;Huang, Haoqiu;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.41-60
    • /
    • 2018
  • Recently, road traffic congestion is becoming a serious urban phenomenon, leading to massive adverse impacts on the ecology and economy. Therefore, solving this problem has drawn public attention throughout the world. One new promising solution is to take full advantage of vehicular ad hoc networks (VANETs). In this study, we propose a new traffic congestion detection and quantification method based on vehicle clustering and fuzzy assessment in VANET environment. To enhance real-time performance, this method collects traffic information by vehicle clustering. The average speed, road density, and average stop delay are selected as the characteristic parameters for traffic state identification. We use a comprehensive fuzzy assessment based on the three indicators to determine the road congestion condition. Simulation results show that the proposed method can precisely reflect the road condition and is more accurate and stable compared to existing algorithms.

Dynamic Traffic Light Control Scheme Based on VANET to Support Smooth Traffic Flow at Intersections (교차로에서 원활한 교통 흐름 지원을 위한 VANET 기반 동적인 교통 신호등 제어 기법)

  • Cha, Si-Ho;Lee, Jongeon;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, traffic congestion and environmental pollution have occurred due to population concentration and vehicle increase in large cities. Various studies are being conducted to solve these problems. Most of the traffic congestion in cities is caused by traffic signals at intersections. This paper proposes a dynamic traffic light control (DTLC) scheme to support safe vehicle operation and smooth traffic flow using real-time traffic information based on VANET. DTLC receives instantaneous speed and directional information of each vehicle through road side units (RSUs) to obtain the density and average speed of vehicles for each direction. RSUs deliver this information to traffic light controllers (TLCs), which utilize it to dynamically control traffic lights at intersections. To demonstrate the validity of DTLC, simulations were performed on average driving speed and average waiting time using the ns-2 simulator. Simulation results show that DTLC can provide smooth traffic flow by increasing average driving speed at dense intersections and reducing average waiting time.

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie (차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향)

  • Jo, Jeonggeun;Kim, Jaekook
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle (MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템)

  • Choi, Baehoon;An, Jhonghyun;Cho, Minho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • Intelligent vehicle plans motion and navigate itself based on the surrounding environment perception. Hence, the precise environment recognition is an essential part of self-driving vehicle. There exist many vulnerable road users (e.g. vehicle, pedestrians) on vehicular driving environment, the vehicle must percept all the dynamic obstacles accurately for safety. In this paper, we propose an multiple vehicle tracking algorithm using microwave radar. Our proposed system includes various special features. First, exceptional radar measurement model for vehicle, concentrated on the corner, is described by mixture density network (MDN), and applied to particle filter weighting. Also, to conquer the curse of dimensionality of particle filter and estimate the time-varying number of multi-target states, reversible jump markov chain monte carlo (RJMCMC) is used to sampling step of the proposed algorithm. The robustness of the proposed algorithm is demonstrated through several computer simulations.

A Range-based Relay Node Selecting Algorithm for Vehicular Ad-hoc Network (차량 애드혹 네트워크를 위한 영역 기반 릴레이 노드 선택 알고리즘)

  • Kim Tae-Hwan;Kim Hie-Cheol;Hong Won-Kee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.88-98
    • /
    • 2006
  • VANET has several different characteristics from MANET such as high mobility of nodes and frequent change of node density and network topology. Due to these characteristics, the network topology based protocol, often used in MANET, can not be applied to VANET. In this paper, we propose an emergency warning message broadcast protocol using range based relay node selecting algorithm which determines the minimal waiting time spent by a given node before rebroadcasting the received warning message. Because the time is randomly calculated based on the distance between sender node and receiver node, a node chosen as a relay node is assured to have a minimal waiting time, even though it is not located at the border of radio transmission range. The proposed emergency warning message broadcast protocol has low network traffic because it does not need to exchange control messages for message broadcasting. In addition, it can reduce End-to-End delay under circumstances of low node density and short transmission range in VANET.

Impact Effects of Multi-Girder Steel Bridges Under Various Traffic Conditions (차량하중에 의한 다주형 강판형교의 충격계수 변화에 관한 연구)

  • 김상효;허진영
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The study presents the linear dynamic analysis of multi-girder steel bridges under vehicular movement to examine the performance characteristics due to the various structural and loading conditions. The road surface roughness and bridge-vehicle interactions are considered. The road surface profiles for the approaching roadway and bridge decks are generated from power spectral density functions for different road roughness conditions. A new filtering method using the wheel trace is proposed to obtain the more rational bridge-vehicle interactions from the randomly generated road surface. The possible settlement condition between the bridge deck and approaching roadway is also included. The dynamic responses of various bridges designed according to current design practice are examined, in which important structural parameters(such as span length, girder spacing, etc.) are considered systematically. In addition to the basic loading conditions due to a single truck passing on the bridge, the traffic conditions of multi-truck traveling either consecutively on the same lane or side-by-side on the adjacent lanes are also evaluated.

  • PDF