• Title/Summary/Keyword: Density Test

Search Result 3,839, Processing Time 0.03 seconds

Optimum Compaction Test of Roller Compacted Concrete Pavement (롤러전압 콘크리트포장의 적정 다짐실험 방안 고찰)

  • Chung, Gun Woo;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.27-33
    • /
    • 2015
  • PURPOSES : To ensure appropriate RCC properties with sufficient strength development and workability, it is necessary to secure a proper level of consistency. It is also necessary to secure maximum dry density, which is an important factor for increasing the interaction of aggregate interlocking, leading to an augmentation of RCC strength. On the other hand, the dry density of RCC can be changed owing to the compaction conditions, water content, and particle size distribution. A Proctor test and a modified Proctor test were used for determining the optimum water content needed to achieve maximum dry density with different amounts of compaction energy. A Vebe test, on the other hand, was used for checking the level of consistency, which is important for producing a workable mixture. METHODS : To confirm the degree of compaction at various particle sizes, RCC mixtures with different sand/aggregate ratios were evaluated. The Proctor test and modified Proctor test were applied to these mixtures to check the effect of the aggregate gradation and compaction energy on the maximum dry density and optimum water content. During each test, three specimens were produced for all types of water content under each aggregate gradation. A compaction curve and the optimum water content and maximum dry density for each aggregate gradation were then obtained for both tests. The range of water content for the appropriate consistency of each aggregate gradation was determined through a Vebe test. The optimum water content was then evaluated based on this range. RESULTS : The compaction test results show that the modified Proctor test provides a higher maximum dry density and lower optimum water content compared with the standard Proctor test. For the modified Proctor test, two cases of aggregate gradation (s/a = 30% and 70%) had the optimum water contents outside of the appropriate water content range. For the standard Proctor test, on the other hand, none of aggregate gradations provided the optimum water content within the desired range. CONCLUSIONS : The modified Proctor test should be used for an RCC mixture design because it can provide adequacy between maximum dry density and consistency. Moreover, the compaction roller has become highly developed for higher compaction energy.

Evaluation of Sand-Cone Method for Determination of Density of Soil (모래 치환법을 이용한 흙의 밀도 시험에 관한 고찰)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.23-29
    • /
    • 2009
  • A sand-cone method is commonly used to determine the density of the compacted soils. This method uses a calibration container to determine the bulk-density of the sand for use in the test. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to fall approximately the same height as a test hole in the field. However, in most cases the size or shape of test hole is not exactly the same as the calibration container. There is certain discrepancy between sand particle settlement or arrangement in the laboratory calibration and in the field testing, which may cause an erroneous determination of in-situ density. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. The sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field.

  • PDF

Application of Penetration in Fall Cone Test to Estimate Relative Density with Variation of Water Content for Sand (함수비를 고려한 모래의 상대밀도 추정을 위한 Fall Cone 관입량의 적용)

  • Choi, Woo-Seok;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.69-77
    • /
    • 2012
  • Relative density, used to express dynamics condition of sand quantitatively, is measured by RI Test, Standard Penetration Test and Cone Penetration Test. Each measurement method has demerits, which is complicated or needs a specific analysis instrument and an analysis of expert. Also the ground is in wet condition commonly because of an unsaturated zone between a saturated zone and a surface, so the behaviour of the ground has different engineering properties unlike the dry ground and it diminishes accuracy of measuring relative density. In this study, the correlation between relative density and penetration of fall cone test in dry condition and wet condition with variation of water content was analyzed and a simple measuring method for relative density was suggested. As a result, there were difference of penetration between dry sands and wet sands, the correlation between relative density and penetration showed linear expression and relative density could be measured by the linear relation.

Residual Strength Estimation of Decayed Wood by Insect Damage through in Situ Screw Withdrawal Strength and Compression Parallel to the Grain Related to Density

  • OH, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.541-549
    • /
    • 2021
  • This paper reports a method to evaluate the residual strength of insect-damaged radiata pine lumber, such as the screw withdrawal strength as a semi-destructive method and a compression parallel to the grain test to assess the density changes after exposure to outdoor conditions. The screw withdrawal strength test was used as a semi-destructive method to estimate the residual density of decayed lumber. A compression parallel to the grain test was applied to evaluate the residual density. Three variables, such as the screw withdrawal strength, compression parallel to the grain, and residual density, were analyzed statistically to evaluate their relationships. The relationship between the residual density and screw withdrawal strength showed a good correlation, in which the screw withdrawal strength decreased with decreasing density. The other relationship between the residual density and compression parallel to the grain was also positively correlated; the compression parallel to the grain strength decreased with decreasing density. Finally, the correlation between the three variables was statistically significant, and the mutual correlation coefficients showed a strong correlation between the three variables. Hence, these variables are closely correlated. The test results showed that the screw withdrawal strength could be used as a semi-destructive method for an in situ estimation of an existing wood structure. Moreover, the method might approximate the residual density and compression parallel to the grain if supplemented with additional data.

A Study on Goodness-of-fit Test for Density with Unknown Parameters

  • Hang, Changkon;Lee, Minyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.483-497
    • /
    • 2001
  • When one fits a parametric density function to a data set, it is usually advisable to test the goodness of the postulated model. In this paper we study the nonparametric tests for testing the null hypothesis against general alternatives, when the null hypothesis specifies the density function up to unknown parameters. We modify the test statistic which was proposed by the first author and his colleagues. Asymptotic distribution of the modified statistic is derived and its performance is compared with some other tests through simulation.

  • PDF

Test for Parameter Change based on the Estimator Minimizing Density-based Divergence Measures

  • Na, Ok-Young;Lee, Sang-Yeol;Park, Si-Yun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.287-293
    • /
    • 2003
  • In this paper we consider the problem of parameter change based on the cusum test proposed by Lee et al. (2003). The cusum test statistic is constructed utilizing the estimator minimizing density-based divergence measures. It is shown that under regularity conditions, the test statistic has the limiting distribution of the sup of standard Brownian bridge. Simulation results demonstrate that the cusum test is robust when there arc outliers.

  • PDF

Evaluation of Sand Replacement Method for Determination of Soil Density (모래 치환법을 이용한 흙의 밀도 시험에 관한 평가)

  • Park, Sung-Sik;Choi, Hyun-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.47-52
    • /
    • 2009
  • A sand replacement method is commonly used to determine the density of the compacted soils. The density of the test or compacted soil is computed on the assumption that the calibration container has approximately the same size or volume and allows the sand to deposit approximately in the same way as a test hole in the field. The sand filling process is simulated in the laboratory and its effect on the determination of density is investigated. Artificially-made holes with different heights and bottom shapes are prepared to simulate various shapes of the test hole in the field. Three sands with different gradations are used in the testing to examine how sand grain size influences the determination of density in the field. As the height of a test hole increases, the error between known density and calculated density decreases, regardless of the types of test hole and sand used. The results of this study can be used to reevaluate and revise the test method for soil density by the sand replacement method.

Recycling of Wastepaper(XIV) -The Effect of Amphoteric PAM and Fines on the Dry Strength Properties of Condebelt Press Dried Linerboards- (고지재생연구(제14조) -고온압착건조처리 골판지 원지의 강도에 미치는 양성 PAM과 미세분의 영향-)

  • 최병수;윤혜정;류정용;신종호;송봉근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • As a novel method to improve strength properties of recycled test liner, Condebelt press drying system was introduced and adopted into Korea. New press drying treatment could enhance the surface and strength properties in accordance with the increase of sheet density. However, Condebelt drying can not increase the density of repeatedly recycled test liner as much as that of virgin UKP and at the same density condition, the strength of Condebelt press dried UKP is greater than that of press dried test liner. In order to increase the strength of test liner, two attempts were tried in this study. First, addition of polyelectrolytes, dry strength agent was investigated with a view to promote the fiber bonding potential of reclaimed corrugated container pulp. Second, blending effect of fines were analyzed in an aims of increasing density and strength of test liner. The results were as follows; Even in the case of test liner densified by Condebelt press dryer, addition of amphoteric PAM as a dry strength agent was effective in increasing strength properties and so the effect of dry strength agent on improving bonding potential of recycled OCC fiber could be confirmed. As an appropriate addition level of amphoteric PAM, below 1% based on dry pulp weight was suggested. Different from virgin UKP, density of recycled test liner can be increased by the blending of OCC fines and strength properties also can be improved. However, excessive blending of OCC fines could result in decreasing of density and serious weakening of test liner. The best blending ration of fines in test liner can be determined as about 30%. Taking into account the fines content in general OCC pulp as 50%, excessive 20% of fines were supposed to be fractionated and removed in order to achieve the best strength of Condebelt press dried test liner.

  • PDF

Comparison Density Representation of Traditional Test Statistics for the Equality of Two Population Proportions

  • Jangsun Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.112-121
    • /
    • 1995
  • Let $p_1$ and $p_2$ be the proportions of two populations. To test the hypothesis $H_0 : p_1 = p_2$, we usually use the $x^2$ statistic, the large sample binomial statistic Z, and the Generalized Likelihood Ratio statistic-2log $\lambda$developed based on different mathematical rationale, respectively. Since testing the above hypothesis is equivalent to testing whether two populations follow the common Bernoulli distribution, one may also test the hypothesis by comparing 1 with the ratio of each density estimate and the hypothesized common density estimate, called comparison density, which was devised by Parzen(1988). We show that the above traditional test statistics ate actually estimating the measure of distance between the true densities and the common density under $H_0$ by representing them with the comparison density.

  • PDF

A Study of Frost Formation on Different Hydrophilic Surfaces (다른 친수성능을 가진 두 표면에서의 착상에 관한 연구)

  • 김철환;신종민;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-524
    • /
    • 2002
  • An experimental study has been conducted to investigate the effects of surface energy on frost formation. Test samples with two different surfaces are installed in a wind tunnel and exposed to a humid airflow. Dynamic contact angles (DCA) for these surfaces are $23^{\circ}\;and\;88^{\circ}$, respectively. The thickness and the mass of frost layer are measured and used to calculate the frost density while frost formation is visualized simultaneously with their measurements. Results show that frost density increases as time increases at specific test conditions. The air Reynolds number, the airflow humidity and the cold plate temperature are maintained at 12,000, 0.0042 kg/kg and $-21^{\circ}C$, respectively. The surface with a lower DCA shows a higher frost density during two-hour test, but no differences in the frost density have been found after two hours of frost generation. Empirical correlations for thickness, mass and density are assumed to be the functions of the test time and DCA.