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Estimator Minimizing Density-based
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ABSTRACT

In this paper we consider the problem of parameter change based on the cusum test pro-
posed by Lee et al. (2003). The cusum test statistic is constructed utilizing the estimator
minimizing density-based divergence measures. It is shown that under regularity conditions,
the test statistic has the limiting distribution of the sup of standard Brownian bridge. Sim-

ulation results demonstrate that the cusum test is robust when there are outliers.

Keywords. Cusum test, density-based divergence mecasurcs, robust property, weak con-
vergence, Brownian bridge.

Running title. Test for parameter change.

1. Introduction

The problem of parameter change in statistical models has a long history. It originally
started in the quality control context and then has been extended to various arcas such as
cconomics, finance, medicine, and seismic signal analysis. Since the paper of Page (1955),
there have been published a vast amount of articles. For a gencral review of the change
point problem, see Csorgd and Horvdth (1997) and the papers therein. In iid samples, the
parametric approach based on the likelihood was taken by many authors (cf. Chan and
Gupta, 2000). However, the parametric approach is not suitable in the situation that no
assumptions are imposed on the underlying distribution of observations. For instance, any
parametric approach is not directly applicable to the test for a change in the autocorrelations
of stationary time series. To overcome such a problem, Lec et al. devised a cusum test
adopting an ideca of Incldn and Tiao (1994). The idea of the cusum test is the same as
the one for the mean and variance change, but it includes a large number of other cascs,
such as the autoregressive coefficient in the random cocfficient autoregressive models and
ARCH parameters. A merit of the cusum test is that it can test the existence of a change
point and at the same time detect the locations of change points. But the most important

advantage is that any estimators can be employed to construct the cusum test as far as
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they satisfy regularity conditions. For instance, when there is a concern about outliers, a
robust estimator can utilized. This is not a task that can be achieved immediately by the
parametric approach.

Recently, Basu et al. (1998) (BHHJ in the sequel) introduced a new estimation procedure
minimizing a density-based divergence measures, called density power divergences. Com-
pared to other density-based divergence methods, such as Beran (1977), Tamura and Boos
(1986) and Simpson (1987), which use the Hellinger distance, and Basu and Lindsey (1994)
and Cao, Cuevas, and Fairman (1994), the new method has a merit of not requiring any
smoothing method. In this case, one can avoid drawbacks and difficulties, like the selection
of bandwidth, that necessarily follow from the kernel smoothing method. In their paper,
BHHJ demonstrated that some of the estimators possess strong robust propertics with little
loss in asymptotic efficiency relative to maximum likelihood estimator (MLE) under model
conditions. Therefore, their estimator can be viewed as a good alternative to the MLE in
terms of efficiency and robustness. Seemingly, this result can be reflected in constructing a
robust cusum test.

In fact, Lee and Park(2001) considered a robust cusum test for the variance change in
linear processes based on a trimming method, and demonstrated that it is necessary to use
a robust method to prevent outliers from damaging the test procedure. Motivated by the
viewpoint: the same phenomenon is anticipated to occur in other situations, we are led to
consider a robust cusum test for the general parameter case. Here, we concentrate on the
cusum test for parameter changes based on the BHHJ estimator. Despite the estimation
method of BHHJ was restricted to iild samples, one can naturally extend the result to
dependent observations. Thus in our set-up, the observations are assumed to be dependent
and to satisfy the strong mixing condition in the sense of Rosenblatt. The organization of
this paper is as follows. In Section 2, we explain how to construct the cusum test using
the BHHJ estimator, and show that the test statistic converges weakly to a maximum of
standard Brown bridge under mild conditions. In Section 3, we perform a simulation study
and compare the two tests based on the BHHJ estimator and MLE. In Section 4, we provide

the proofs. Finally in Section 5, we provide concluding remarks.

2. Main result
BHHJ introduced a family of density power divergences da, o 2> 0;

[{fHe(z) - (1+ £) g(2)f*(2) + 2¢"**(2)}dz ,a>0
J 9(2) (log g(z) — log f(2)) dz ,a=0,

where g and f are density functions.

da(g, f) = {
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Consider a parametric family of models {Fp}, indexed by the unknown parameter 6§ €
© C R™, possessing densities { fa} with respect to Lebesgue measure, and let G be the class
of all distributions having densities with respect to Lebesgue measure. For any given «, they
defined the minimum density power divergence functional T, () by the requirement that for

every G in G,

da (9, frae)) = glelgda (9, fo),

where g is the density of G.
Let éa,n be the minimum density power divergence estimator based on Xj,..., Xy;

o, = arg glelél Hon(0), (2.1)
where Hon(0) =n7' 31 Va(0; X;) and

Viig) = | T 10Tz = (14 2) f5@) >0

— log fo(z) ,a=0.
When Xi,...,X, are iid with distribution G with corresponding density g, BHHJ showed
that under the below conditions with r = 3, éa,n is weakly consistent for 8, = To(G) and

n éa n — 04) is asymptotically normal with mean zero vector.
, Y y

Conditions

Al. The distribution Fy and G have common support, so that the sct A on which the

densities are greater than zero is independent of

A2. There is an open sct ¥ of the parameter space © containing the best fitting parameter
8, such that for all z € X, and all § € 9, the density fo(z) has continuous partial
derivatives of order r(> 0) with respect to § and

& fo(X)

E laail .90,

<oo, 0<j&r

A3. The integral [ f;7*(z)dz can be differentiated r-times (r > 0) with respect to 6, and

the derivative can be taken under the integral sign

Ad4. For each 1 < iy, --,i, < m, there exist functions M;,...; (z) with EM;,..; (X) < 00
such that

8"V (6; z)
80;, - - 00;.

< M. (2)
foralld e dand x € X.

A5, There exists a nonsingular matrix J, defined by

J= L g (62Va(0a;X)>

T 1l+a 06°
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Now, let us consider the ergodic and strictly stationary process {X;;t = 1,2,...}. We
assume here that 8, = T, (G) exists and is unique. Define the estimator éa,n of 8, as the
minimizer of Hy »(8) like (2.1). In fact, the estimator is obtained by solving the estimating
equations
0Han(0)

o6

To prove Theorem 1.1, we need the following lemma.

Ua,n(o) = (1+a)_1 =0.

Lemma 2.1. Let X, Xs,... be strictly stationary and ergodic. If

1. © is compact,

2. A(z,0) is continuous in 8 for all x,

3. There exists a function B(z) such that EB(X) < oo and |A(z,0)| < B(z) for
allz and 09,

then
n

15 4(X,0) - a(0)

n
t=1

P{ lim sup = O} =1, (2.2)

n—0oo oee

where a(6) = EA(X, 9).

In addition, if there ezists 8° = arg mingee a(8) and it is unique, then
P{énHGO,n—ﬁoo} =1 (2.3)
where 0, = arg mingeg n=* S AXe,0).

Theorem 2.1. ( Strong consistency )
Assume that Conditions Al - A4 hold with r = 1. Then there ezists a sequence {f4.n}
such that
(%) Ua‘n(éa,n) =0 for sufficiently large n, (2.4)
(i1) P{éu,n — 0y, as n — oo} =1 (2.5)
Next consider the limit distribution of éa,n-
Assume that Conditions A1-A5 hold. Since (2.4) holds for the minimum density power

divergence estimator {éa,n}, by expanding the vector Ua,n(éa,n) in a Taylor serics about 6,

we have
0= Ua,n(éa,n) = Ua,n(ea) - Rn (écx,n - ga) s
where R, is the m x m matrix whose (2, 7)-th component is

g 1 [8%Hy . (0) B Hon(0an) (51
i ._ a,7 _pk
Ri=-1ra { 56,06, Z 30:0, aok (oa'" ”a) (2:6)
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for some point 87, , = 04 + w(fan — 0a), ¢ € [0,1]. Therefore, we have
éa,r; - oa = J_an,n(ga) + An’

where A, = J~1(J— R,) (éa,n - Ga), and consequently

[ns] 74 _1 [ng] [ns]
’\/_ﬁ' (oa,[ns] - oa) =Jt. —\/_T—an,[ns](ga) + '\/_T—lA[ns]- (27)
Suppose that there exists a positive definite and symmetric matrix K such that
[ns] 1
kel Bq /2 .
\/ﬁUa_[ns]( ) => K/*W(s) (2.8)

in the D™[0, 1] space, where W denotes a m-dimensional standard Brownian motion. In
view of (2.7) and (2.8), if it holds that

k
max —=Ak = 0p(1), (2.9)

we obtain the convergence result as in Theorem 2.2.. The following is the main result of this

section.

Theorem 2.2. ( The functional central limit theorem )
Assume that Conditions A1-A5 hold with r=38. Also, suppose that

1. {X:} is a-mizing of size —v/(v = 2) fory > 2, i, Yoo a(n)*=7 < co.
2. E|0Va(04; X)/06:}7 < 00 fori=1,...,m.
8. nK, — K for some positive definite and symmetric matriz K, where K, is
the covariance matriz of Uy n{fa)-
Then we have
[ns]

W (éa‘[ns] - 9(,) = J_1K1/2W(S).

The following lemma is concerned with the negligibility of Ag.

Lemma 2.2. Under the assumptions of Theorem 2.2.,

max (n’1/2k||Ak]|) = op(1).

Finally, we consider the problem of testing

Hy : 6, does not change over X1,...,X,. vs.
Hl : not Ho.

As a consequence of Theorem 2.2., one can readily construct the tests for the null hypothesis.

The following is the result.
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Theorem 2.3. Define the test statistic Tg , by

= max & (B = o) TET (B = i) (2.10)

m<k<n N

Suppose that Assumptions of Theorem 2.2. hold. Then, under Hy,

Ton = sup [Wo(s)*.

0<s<1

We reject Hy if TS a,n U8 large.

Since J and K arc unknown, we should replace them by consistent estimators J and K.

First, note that
7= [uo, (2o S22z + [ (i0.(2) - i (ua, () 9(2) - fon (2)) o (2)d,
where ug(z) = 8log fa(2)/80 and ig(z) = —dug(z)/08. Therefore, if we put
7= [{avau, G, 6 -, @} e
-Z{ (X0) - o, (XeJug, (X'} 2 (Xe),

then J converges to J almost surely.
Let DV, (6;z) be the m x 1 vector of partial derivatives of V,(0;z) with respect to 6.

Under the assumptions of Theorem 2.2., note that

DV Ga,Xo) DVa(gouXk)
K= ZC( T+e | 1+ ’

k=—o0

due to theorem 1.5 in Bosq(1996, page, 32). Assume that

K1. E||DVa(6a; X)|If < 0,

K2. 7 a(n)/? < oo,

K3. there exists a function M (z) with EM (X)? < oo such that [[82V,(0; z)/86%|| <
M(z) for all0 € © and z € X

Then K — K in probability, where

h n—k
. n 1 . A
K= Z T 2 Z DVa(ga,M Xt) . DVQ(GQ,H; Xt+k)l

2
koh n(l+a)? &
and {h,} is a sequence of positive integers such that h, — oo and h,//n — 0.

Theorem 2.4. Define the test statistic Ty by

Tamim masx S (0us=bun) TR (B = O (2.11)

m<k<n 1
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Suppose that Assumptions of Theorem 2.2. and KI1-K3 hold. Then, under Hy,
Tan = sup [W(s)I".
0<s<1

We reject Hy if Ta,n is large.
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