• Title/Summary/Keyword: Density Maximum

Search Result 3,072, Processing Time 0.032 seconds

Efficiency and Robustness of Fully Adaptive Simulated Maximum Likelihood Method

  • Oh, Man-Suk;Kim, Dai-Gyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.479-485
    • /
    • 2009
  • When a part of data is unobserved the marginal likelihood of parameters given the observed data often involves analytically intractable high dimensional integral and hence it is hard to find the maximum likelihood estimate of the parameters. Simulated maximum likelihood(SML) method which estimates the marginal likelihood via Monte Carlo importance sampling and optimize the estimated marginal likelihood has been used in many applications. A key issue in SML is to find a good proposal density from which Monte Carlo samples are generated. The optimal proposal density is the conditional density of the unobserved data given the parameters and the observed data, and attempts have been given to find a good approximation to the optimal proposal density. Algorithms which adaptively improve the proposal density have been widely used due to its simplicity and efficiency. In this paper, we describe a fully adaptive algorithm which has been used by some practitioners but has not been well recognized in statistical literature, and evaluate its estimation performance and robustness via a simulation study. The simulation study shows a great improvement in the order of magnitudes in the mean squared error, compared to non-adaptive or partially adaptive SML methods. Also, it is shown that the fully adaptive SML is robust in a sense that it is insensitive to the starting points in the optimization routine.

Distribution of Irregular Wave Height in Finite Water Depth (유한수심에서의 불규칙파의 파고 분포)

  • 안경모;마이클오찌
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1994
  • This study is concerned with an analytic derivation of the probability density function applicable for wave heights in finite water depth using two different methods. As the first method of the study, a probability density function is developed by applying a series of polynomials which is orthogonal with respect to Rayleigh probability density function. The newly derived probability density function is compared with the histogram constructed from wave data obtained in finite water depth which indicate strong non-Gaussian characteristics. Although the probability density represents the histogram very well. it has negative density at large values. Although the magnitude of the negative density is small. it negates the use of the distribution function fer estimating extreme values. As the second method of the study, a probability density function of wave height is developed by applying the maximum entropy method. The probability density function thusly derived agrees very well with the wave height distribution in shallow water, and appears to be useful in estimating extreme values and statistical properties of wave heights in finite water depth. However, a functional relationship between the probability distribution and the non-Gaussian characteristics of the data cannot be obtained by applying the maximum entropy method.

  • PDF

Temperature Effects on the Compaction and Compressive Strength of Soils (온도변화가 흙의 다짐과 압축강도에 미치는 영향)

  • 김재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3137-3146
    • /
    • 1973
  • This study was to investigate the effects of compaction, compressive strength and Atterberg limits in accordance with the temperatures changes. It was conducted on four soils-KJ, JJ, MH, SS-at temperatures of -1, 1, 3, 5, 7, 10, 15, 19, $22^{\circ}C$. These tests were obtained the maximum dry density and the optimum moisture content of four soils in accordance with temperature changes by using distilled water and $CaCl_2$ 10% solution, and were put to the compressive strength tests on remolded specimens of soils compacted at the optimum moisture content. The result of the study can be summarized as follows; The maximum dry density increased with an increase in temperature, and the use of $CaCl_2$ 10% solution had higher maximum dry density than distilled water. The optimum moisture content decreased with an increase in temperature, and the use of $CaCl_2$ 10% solution had lower optimum moisture content than distilled water. The maximum compressive strength was shown high peak from $7^{\circ}C\;to\;15^{\circ}C$, and the use of $CaCl_2$ 10% solution had higher maximum compressive strength than distilled water. The liquid limit and plasticity index decreased with an increased in temperature. It is estimated that the use of $CaCl_2$ 10% solution can lower the minimum compacted temperature from $2^{\circ}C\;to\;4^{\circ}C$ in low temperature.

  • PDF

Comparing the dosimetric impact of fiducial marker according to density override method : Planning study (양성자 치료계획에서 fiducial marker의 density override 방법에 따른 선량변화 비교 : Planning study)

  • Sung, Doo Young;Park, Seyjoon;Park, Ji Hyun;Park, Yong Chul;Park, Hee Chul;Choi, Byoung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Purpose: The application of density override is very important to minimize dose calculation errors by fiducial markers of metal material in proton treatment plan. However, density override with actual material of the fiducial marker could make problem such as inaccurate target contouring and compensator fabrication. Therefore, we perform density override with surrounding material instead of actual material and we intend to evaluate the usefulness of density override with surrounding material of the fiducial marker by analyzing the dose distribution according to the position, material of the fiducial marker and number of beams. Materials and Method: We supposed that the fiducial marker of gold, steel, titanium is located in 1.5, 2.5, 4.0, 6.0 cm from the proton beam's end of range using water phantom. Treatment plans were created by applying density override with the surrounding material and actual material of the fiducial marker. Also, a liver cancer patient who received proton therapy was selected. We located the fiducial marker of gold, steel, titanium in 0, 1.5, 3.5 cm from the proton beam's end of range and the treatment plans were created by same method with water phantom. Homogeneity Index(HI), Conformity Index(CI) and maximum dose of Organ At Risk(OAR) in Planning Target Volume(PTV) as the evaluation index were compared according to the material, position of the fiducial marker and number of beam. Results: The HI value was more decreased when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Especially the HI value was increased when the fiducial marker was located farther from the proton beam's end of the range for a single beam and the fiducial marker's position was closer to isocenter for two or more beams. The CI value was close to 1 and OAR maximum dose was greatly reduced when density override with surrounding material of the fiducial marker was performed comparing with density override with actual material. Conclusion: Density override with surrounding material can be expected to achieve more precise proton therapy than density override with actual material of the fiducial marker and could increase the dose uniformity and target coverage and reduce the dose to surrounding normal tissues for the small fiducial markers used in clinical practice. Most of all, it is desirable to plan the treatment by avoiding the fiducial marker of metal material as much as possible. However, if the fiducial marker have on the beam path, density override of the surrounding material can be expected to achieve more precise proton therapy.

  • PDF

Effectiveness of Flashing Light for Increasing Photosynthetic Efficiency of Microalgal Cultures over a Critical Cell Density

  • Park, Kyong-Hee;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.189-193
    • /
    • 2001
  • Critical cell density (CCD), the maximum cell concentration without mutual shading in algal cultures, can be used as a new operating parameter for high-density algal cultures and for the application of the flashing light effect on illuminated algal cultures. CCD is a function of average cell volume and light illumination area. The CCD is thus proposed as an index of estimation of mutual shading in algal cultures. Where cell densities are below the CCD, all the cells in photobioreactors can undergo photosysnthesis at their maximum rate. At cell densities over CCD, mutual shading will occur and some cells in the illumination chamber cannot grow photoautotrophically. When the cell concentration is higher than the CCD, specific oxygen production rates under flashing light were higher than those under continuous light. The CCD was found to be a useful engineering parameter for the application of flashing light, particularly in high-density algal cultures.

  • PDF

Analysis on Current Density Induced Inside Body of Hot-Line Worker for 765kV Double Circuit Transmission Line (765 kV 2회선 송전선 활선 작업자 인체내부 유도전류 밀도 해석)

  • Song, Ki-Hyun;Min, Suk-Won
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.231-238
    • /
    • 2006
  • This paper analysed the induced current density inside human body of hot-line worker for 765kV double circuit transmission line according to locations of human body. Human model was composed of several organs and other parts, whose shapes were expressed by spheroids or cylinders. Organs such as the brain, heart, lungs, liver and intestines were taken into account. Applying the 3 dimensional boundary element method, we calculated induced current density in case a worker was located inside and outside a lowest phase of 765 kV transmission line in which a 60% current of maximum load flowed. As results of study, we found a maximum induced current density in all organs was less than $10mA/m^2$ when a wonder was outside. As one in brain and heart was higher than $10mA/m^2$ when a worker was inside, we propose a method for lowering current density.

Adaptive Signal Separation with Maximum Likelihood

  • Zhao, Yongjian;Jiang, Bin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.145-154
    • /
    • 2020
  • Maximum likelihood (ML) is the best estimator asymptotically as the number of training samples approaches infinity. This paper deduces an adaptive algorithm for blind signal processing problem based on gradient optimization criterion. A parametric density model is introduced through a parameterized generalized distribution family in ML framework. After specifying a limited number of parameters, the density of specific original signal can be approximated automatically by the constructed density function. Consequently, signal separation can be conducted without any prior information about the probability density of the desired original signal. Simulations on classical biomedical signals confirm the performance of the deduced technique.

Comparing NDVI to maximum latewood density of annual tree rings in a boreal coniferous forest in North China

  • He, Jicheng;Shao, Xuemei;Wang, Lili
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.34-36
    • /
    • 2003
  • In boreal conifers in China's Northeast area, maximum latewood density (MXD) of tree-ring varies in response to growing season temperature. Forest net productivity can be estimated using the Normalized-difference Vegetation Index (NDVI) calculated from satellite sensor data. MXD from the Mohe site in this area was compared with estimates of NPP for 1982-1999 produced by the NDVI model, which was established based on the relationship of leaf area index (LAI) and NDVI. The result shows that the MXD series correlated significantly with the NDVI model estimates series, suggesting that MXD appeared to be an appropriate index for productivity or canopy growth in region where forest productivity is strongly temperature-related.

  • PDF

An Application of Minimum Strain Energy Density Criterion in Mixed Mode Fatigue Problem (혼합모드 피로문제에서의 최소 변형에너지 밀도기준의 적용)

  • Shim, Kyu-Seok;Koo, Jae-Mean
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, the maximum minimum strain energy density criterion was applied to the mixed mode fatigue test of A5052 H34 alloy. In this study result we can have seen that the authors stress intensity factor for the finite width specimen and method of determining testing load, based on the plastic zone size and the limited maximum stress intensity factor by ASTM STANDARD E-647-95, is useful.

Design and Efficiency Characteristic Test of 340W Home Appliance Synchronous Reluctance Motor (가전용 340W급 동기형 릴럭턴스 전동기 설계 및 효율특성 실험)

  • 이중호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.39-52
    • /
    • 2003
  • This paper deals with an automatic design procedure for the maximum torque density and power factor in a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to the number of flux barrier and the ratio Kw of flux barrier width to iron sheet width of a SynRM under the mechanical constraint. The Finite Elements Analysis (FEA) has been used to evaluate the maximum torque density and power factor with each rotor shape. The proposed procedure allows to define the rotor geometric dimensions starling from an existing mootor or a preliminary design. The maximum torque density and power factor of a SynRM has been resulted with the rotor design variation. To prove the propriety of the designed SynRM, the Digital Signal Processor (DSP) installed experimental devices are equipped and the efficiency characteristic test is Performed.