• Title/Summary/Keyword: Density Functional Theory Calculation

Search Result 96, Processing Time 0.024 seconds

Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks (Metal-Organic Framework의 수소 흡착 메커니즘의 이해)

  • Lee, Tae-Bum;Kim, Dae-Jin;Yoon, Ji-Hye;Choi, Sang-Beom;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.634-637
    • /
    • 2005
  • Hydrogen adsorption mechanism onto the porous metal-organic frameworks (MOFs) has been studied by density functional theory calculation. The selected functionals for the predict ion of interact ion energies between hydrogen and potential adsorption sites of MOF was utilized after the evaluation with the various functionals for interaction energy of $H_2C_6H_6$ model system the adsorption energy of hydrogen molecule into MOF was investigated with the consideration of the favorable adsorption sites and the orientations. We also calculated the second favorable adsorption sites by geometry optimization using every combination of two first absorbed hydrogen molecules. Based on the calculation of first and second adsorption sites and energies, the hydrogen adsorption into MOF follows a cooperative mechanism in which the initial metal sites initiate the propagation of the hydrogen adsorption on the whole frameworks. In addition, it was found that the interaction strength between the simple benzene ring with hydrogen is significantly reinforced when the benzene ring has been incorporated into the framework of MOFs.

  • PDF

Interaction of NpO+2 with Cl- in Na-Ca-Cl-type solutions at ionic strength of 6M: Effect of presence of Ca ion on interaction

  • Nagasaki, Shinya;Saito, Takumi;Tsushima, Satoru;Goguen, Jared;Yang, Tammy
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1778-1782
    • /
    • 2017
  • The interaction of $NpO^+_2$ with $Cl^-$ was studied using visible-near-infrared spectroscopy in $NaCl-Ca-Cl_2-NaClO_4$, $NaCl-NaClO_4$, and $CaCl_2-NaClO_4$ solutions with ionic strength (I) of 6M. The spectra of $NpO^+_2$ around 980 nm varied with $Cl^-$ concentration in the $NaCl-CaCl_2-NaClO_4$ and $NaCl-NaClO_4$ solutions at [$Cl^-$] ${\geq}3.5M$, but not in the $CaCl_2-NaClO_4$ solution. Assuming the 1:1 interaction between $NpO^+_2$ and $Cl^-$, the apparent equilibrium constants at I = 6M were evaluated. The presence of $Ca^{2+}$ was found to destabilize overall interaction between $NpO^+_2$ and $Cl^-$. The observations were consistent with the density functional theory calculation.

The Study of Adsorption Structures of 3-Methyl-5-Pyrazolone on the Ge(100) Surface

  • Lee, Myungjin;Lee, Hangil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3567-3570
    • /
    • 2014
  • The most stable adsorption structures and energies of four tautomers of 3-methyl-5-pyrazolone (keto-1, enol-1, keto-2, and enol-2) on Ge(100) surfaces were investigated using density functional theory (DFT) calculations. The enol-1, keto-2, and enol-2 tautomers, but not the keto-1 tautomer, were found to exhibit stable adsorption structures on the Ge(100)-$2{\times}1$ surface. Of these three adsorption structures, that of enol-2 is the most stable.

Comparison of Coverage-Dependent Adsorption Structures of Alanine and Leucine on Ge(100): Bonding Configuration and Adsorption Stability

  • Park, Yeong-Chan;Yang, Se-Na;Kim, Jeong-Won;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.215-215
    • /
    • 2011
  • The bonding configuration and adsorption stability of alanine and leucine adsorbed on Ge(100)-2${\times}$1 surface were investigated and compared using core-level photoemission spectroscopy (CLPES) and density functional theory (DFT) calculations. The bonding configuration, stability, and adsorption energies were evaluated for two different coverage levels. In both cases, the C 1s, N 1s, and O 1s core-level spectra at a low coverage (0.30 ML) indicated that the carboxyl and amine groups participated in bonding with the Ge(100) surface in an "O-H dissociated-N dative bonded structure". At high coverage levels (0.60 ML), both this structure and an "O-H dissociation bonded structure" were present. As a result, we found that alanine adsorbs more easily (lower adsorption energy) than leucine on Ge(100) surfaces due to less steric hindrance of side chain.

  • PDF

A Conformational Comparison of 1,2-Bis(phenylthio)-o-carborane, $C_{14}H_{20}B_{10}S_2$, by X-Ray Diffraction Method and Molecular Orbital Calculation

  • Song, Kyu-Ho;Ko, Jae-Jung;Kang, Sang-Ook;Han, Won-Sik;Kwon, Soon-Nam;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The reaction of dilithio-o-carborane with dipenyl disulfide produces a phenyl thiolated o-carborane and it has been confirmed that there is conformational similarity between the structure of the compound elucidated by X-ray crystallography and that calculated by ab initio and density functional theory.

Theoretical study on electronic properties of deoxyfluorinating sulfur-based reagents

  • Lim, Soobin;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.51-55
    • /
    • 2016
  • Organofluorine compounds have become increasingly important as pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science. Recent advances on the efficient introduction of fluorine to organic molecules are mainly results of development of transition metal catalysts and fluorination reagents. Among the various fluorination reagents, we have been interested in developing more efficient sulfur-based deoxyfluorinating reagents. Here we report various electronic properties of five popular sulfur-based deoxyfluorinating reagents using density functional theory calculation. We believe that the theoretical study on the reagents will assist the rational design of new deoxyfluorinating reagents.

Computational Study of the Molecular Structure, Vibrational Spectra and Energetics of the OIO Cation

  • Lee, Sang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1855-1858
    • /
    • 2004
  • Molecular geometries for the cationic and neutral species of OXO (X=Cl, Br, and I) are optimized using the Hartree-Fock (HF) theory, the second order Moller-Plesset perturbation theory (MP2), the density functional theory with the B3LYP hybrid functional (B3LYP), and the coupled cluster theory using single and double excitation with a perturbational treatment of triplet excitation (CCSD[T]) methods, with two basis sets of triple zeta plus polarization quality. The single point calculations for these species are performed at the CCSD(T,Full) level. The harmonic vibrational frequencies for these species are calculated at the HF, MP2, B3LYP and CCSD(T) levels. The adiabatic ionization potential for OIO is calculated to be 936.7 kJ/mol at the CCSD(T,Full) level and the correct value is estimated to be around 945.4 kJ/mol.

Adsorption Selectivities between Hydroxypyridine and Pyridone Adsorbed on the Ge(100) Surface

  • Lee, Myungjin;Lee, Hangil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.137-137
    • /
    • 2013
  • The most stable adsorption structures and their corresponding energies of 4-pyridone, 4-hydroxypyridine, 2-pyridone and 2-hydroxypyridine have been investigated by Density Functional Theory (DFT) calculation method and high-resolution photoemission spectroscopy (HRPES). We confirmed that between the two reaction centers of 4- and 2-pyridone, only O atom of carbonyl functional group can act as a Lewis base and thus, O dative bonding structure is the most stable. On the other hand, we clarified that both the two reaction centers (the cyclic N atom and the O atom of hydroxyl functional group) of 4- and 2-hydroxypyridine (tautomers of 4- and 2-pyridone) can successfully function as a Lewis base. Through the interpretation of the N 1s and O 1s core level spectra obtained using HRPES, we could confirm the electronic structures and bonding configurations of these molecules with a coverage dependence on the Ge(100) surface.

  • PDF

Creating Structure with Pymatgen Package and Application to the First-Principles Calculation (Pymatgen 패키지를 이용한 구조 생성 및 제일원리계산에의 적용)

  • Lee, Dae-Hyung;Seo, Dong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.556-561
    • /
    • 2022
  • Computational material science as an application of Density Functional Theory (DFT) to the discipline of material science has emerged and applied to the research and development of energy materials and electronic materials such as semiconductor. However, there are a few difficulties, such as generating input files for various types of materials in both the same calculating condition and appropriate parameters, which is essential in comparing results of DFT calculation in the right way. In this tutorial status report, we will introduce how to create crystal structures and to prepare input files automatically for the Vienna Ab initio Simulation Package (VASP) and Gaussian, the most popular DFT calculation programs. We anticipate this tutorial makes DFT calculation easier for the ones who are not experts on DFT programs.

Electronic structure and magnetism of catalytic material Pt3Ni surfaces: Density-functional study

  • Sharma, Bharat Kumar;Kwon, Oryong;Odkhuu, Dorj;Hong, Soon Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.172-172
    • /
    • 2012
  • A Pt-skin $Pt_3Ni$(111) surface was reported to show high catalytic activity. In this study, we investigated the magnetic properties and electronic structures of the various oriented surfaces of bulk-terminated and Pt-segregated $Pt_3Ni$ by using a first-principles calculation method. The magnetic moments of Pt and Ni are appreciably enhanced at the bulk-terminated surfaces compared to the corresponding bulk values, whereas the magnetic moment of Pt on the Pt-segregated $Pt_3Ni$(111) surface is just slightly enhanced because of the reduced number of Ni neighboring atoms. Spin-decomposed density of states shows that the dz2 orbital plays a dominant role in determining the magnetic moments of Pt atoms in the different orientations. The lowering of the d-band center energy (-2.22 eV to -2.46 eV to -2.51 eV to -2.65 eV) in the sequence of bulk-terminated (100), (110), (111), and Pt-segregated (111) may explain the observed dependence of catalytic activity on surface orientation. Our d-band center calculation suggests that an observed enhanced catalytic activity of a $Pt_3Ni$(111) surface originates from the Pt-segregation.

  • PDF