• Title/Summary/Keyword: Density Flow

Search Result 2,372, Processing Time 0.032 seconds

Physiological Responses of Olive Flounder (Paralichthys olivaceus) by Capacity Density Difference during Salinity Change from Seawater to Freshwater (사육수의 담수화시 수용밀도에 따른 넙치(Paralichthys olivaceus)의 생리적 반응 비교)

  • Hur Jun Wook;Lee Bok Kyu;Min Byung Hwa;Park In-Seok;Choi Cheol Young;Lee Jeong Yeol;Chang Young Jin
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.419-425
    • /
    • 2004
  • Two different groups (30 and 60 inds.) of olive flounder (Paralichthys olivaceus) were abruptly (within 30 min) exposed to hypo-salinities from seawater (SW, 35$\textperthousand$) to freshwater (FW, 0$\textperthousand$) (30FW and 60FW) and to 35$\textperthousand$ (30SW and 60SW) in a flow through seawater culture systems. Analysis of plasma samples showed the following significant increase at 0$\textperthousand$: cortisol from $2.8\;ng\;mL^{-1}$ to $66.9\;ng\;mL^{-1}$ (30FW) and from $2.7\;ng\;mL^{-1}$ to $314.1\;ng\;mL^{-1}$ (60FW) after 24 hours of exposure; glucose from $15.8\;mg\;dL^{-1}$ to $257.7\;mg\;dL^{-1}$ after 3 hours exposure and to $164.0\;mg\;dL^{-1}$ after 24 hours in 60FW. Plasma $Na^+$ concentration of 30FW and 60FW were decreased until 24 hours after expose. However that in 30SW and 60SW showed no significant differences. Plasma $Cl^-$ concentration of 60FW was decreased from $59.0\;mEq\;L^{-1}$ to $43.5\;mEq\;L^{-1}$ and to $30.0\;mEq\;L^{-1}$ after 3 and 24 hours of exposure, respectively. At all experimental groups, survival were 100% until 24 hours.

A Study on Design Verification of Radio Measurement System for Interplanetary Space (태양-지구 간 공간 전파 관측 시스템 설계 검증)

  • Jeong, Cheol-Oh;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.97-101
    • /
    • 2011
  • Interplanetary space between Sun and Earth is area of flowing very fast solar wind which is contained X ray, flare, corona mass, etc. occurred Sun surface to Earth. This solar wind is affected directly to Earth magnetosphere and ionosphere so that this bring out broadcasting and communication interruptions, satellite operation obstacles and power gird defects and etc..Solar wind flow in interplanetary space is measured as solar wind speed, density and direction by measuring scintillation value to be produced during radio source is passed through solar wind. The wider effective collective areas and the more radio sources, accuracy of solar wind measuring is got higher. Function test was performed using 3 tiles which was manufactured as prototype. Restriction of quantity of tiles, test was performed to confirm whether measured beam pattern is complied with requirement or not. In this paper, it is shown design and their specification of ground interplanetary radio measurement system as well as technical issues and resolutions which were raised during design phase. Also result of function verification test using prototype is suggested. It is confirmed that measured beam pattern was met with requirement.

A Water Surface Detection Method by Correlation Analysis of Watermark Images with Time Interval (시차가 있는 수위표 이미지의 상관분석을 통한 수면측정기법)

  • Seo, Myoung-Bae;Lee, Chan-Joo;Kim, Dong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.470-477
    • /
    • 2013
  • The aim of this study is to suggest a detection method of water surface location and its evaluation results of application for same vertical position in two successive images with time interval including both staff gauge and water surface. A specific rectangular inspection area is defined from the top of watermark and then the correlation coefficients for the inspection area of the same position of two images with short time interval is calculated. Accordingly, it is possible to identify differences between changing area and fixed area of pixel density by the water flow. The photographs taken in the laboratory were analyzed in order to validate the proposed technique. As the result of the experiment, it is identified that characteristic of correlation coefficients depends on the size of the inspection area. In the case that the inspection area is within the entire width of the watermark, water surface characteristic according to correlation coefficients is clearly noticeable. Thus, it is identified that the proposed technique can be utilized to search water surfaces. Besides, using corelation analysis of two images with time interval, it is identified that error range between 10 and 42cm was reduced in the level of 2.6cm or less in the contaminated photo of existing image stage gauge. Therefore, it is expected that the suggested method can be utilized to enhance image stage gauge performance improving the previous water surface detection method.

Application of nightlight satellite imagery for assessing flooding potential area in the Mekong river basin (메콩강 홍수위험분석을 위한 나이트라이트 위성영상 적용성 검토)

  • Try, Sophal;Lee, Daeup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.565-574
    • /
    • 2018
  • High population density in deltaic settings, especially in Asia, tends to increase and causes coastal flood risk because of lower elevations and significant subsidence. Large flood annually causes numerous deaths and huge economic losses. In this paper, an innovative technology of spatial satellite imagery has been used as tool to analyze the socio-economic flood-related damage in Mekong river basin. The relationship between nightlight intensity and flood damages has been determined for the period of 1992-2013 with a spatial resolution of 30 arc sec ($0.0083^{\circ}$), which is nearly one kilometer at the equator. Flow path distance was calculated to identify the distance of each cell to river network and to examine how nightlight intensity correlate to the area close to and far from river network. Statistical analysis results highlight the significant correlation between nocturnal luminosity intensity and flood-related damages in countries along the Mekong river (i.e., Cambodia, China, Lao PDR, Thailand, and Vietnam). This result reveals that the areas close to the river network correspond to high human distribution and causes huge damage during flooding. The result may provide key information to the region with respect to decisions, attentions, and mitigation strategies.

The Effect of the Deposition Temperature and la Doping Concentration on the Properties of the (Pb, La)$\textrm{TiO}_3$ Films Deposited by ECR PECVD (증착온도와 La조성비가 ECR 플라즈마 화학기상증착법으로 증착한 (Pb, La)$\textrm{TiO}_3$박막의 물성에 미치는 영향)

  • Jeong, Seong-Ung;Park, Hye-Ryeon;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • Perovskite lanthanum doped lead titanate ($(Pb,La)TiO_{3}$ or PLT) thin films were successfully fabricated on Pt/TijSiO.iSi substrates at the temperatures as low as $440~500^{\circ}C$ by eleclron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR PECVII). Since the volatilities of the MC sources arid oxide molecules (especially Ph oxide) increased with increasing deposition temperature, the film deposition rate and the (I'b + La)/'Ti ratio decreased Stoichiometric perovskite PL'T films with good dielectric and leakeage current properties were obtained at the temperatures of $460~480^{\circ}C$. The lanthanum content of the film was nearly directly propotional to $La(DPM)_{3}$ flow rate. As the La/Ti ratio increased from 3.0 to 9.5%, the dielectric constant increased from 360 to 650 and the leakeage current density at 100kV/cm electric field decreased from $4{\times}10^{-5}$ to $4{\times}10_{-8}A/cm^2$.

  • PDF

A Study on Predictive Traffic Information Using Cloud Route Search (클라우드 경로탐색을 이용한 미래 교통정보 예측 방법)

  • Jun Hyun, Kim;Kee Wook, Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.287-296
    • /
    • 2015
  • Recent navigation systems provide quick guide services, based on processing real-time traffic information and past traffic information by applying predictable pattern for traffic information. However, the current pattern for traffic information predicts traffic information by processing past information that it presents an inaccuracy problem in particular circumstances(accidents and weather). So, this study presented a more precise predictive traffic information system than historical traffic data first by analyzing route search data which the drivers ask in real time for the quickest way then by grasping traffic congestion levels of the route in which future drivers are supposed to locate. First results of this study, the congested route from Yang Jae to Mapo, the analysis result shows that the accuracy of the weighted value of speed of existing commonly congested road registered an error rate of 3km/h to 18km/h, however, after applying the real predictive traffic information of this study the error rate registered only 1km/h to 5km/h. Second, in terms of quality of route as compared to the existing route which allowed for an earlier arrival to the destination up to a maximum of 9 minutes and an average of up to 3 minutes that the reliability of predictable results has been secured. Third, new method allows for the prediction of congested levels and deduces results of route searches that avoid possibly congested routes and to reflect accurate real-time data in comparison with existing route searches. Therefore, this study enabled not only the predictable gathering of information regarding traffic density through route searches, but it also made real-time quick route searches based on this mechanism that convinced that this new method will contribute to diffusing future traffic flow.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Ecological Characteristic of Clithon retropictus inhabitating in Yeoncho River in Southern Coastal Area (남해안 연초천에 서식하는 기수갈고둥의 생태적 특성 연구)

  • Lee, Soo-Dong;Kim, Mi-Jeong;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.591-602
    • /
    • 2018
  • Clithon retropictus has been designated as an endangered wildlife Class II due to its high value as a biological indicator species capable of judging environmental quality such as salinity, water flow, and ground conditions. However, basic research on its physiological and ecological characteristics is still lacking. As such, this study intended to examine the impact of environmental conditions such as salinity and soil particle size on the size and density of Clithon retropictus at the Yeoncho river estuary. The investigation of the salinity, which is a key variable that affects the distribution of organisms in the estuary, showed that Clithon retropictus could grow at a salinity ranging from 0#x2030; (freshwater) to 25‰ (brackish water). The coarse gravel (19-75mm) tended to increase nearer the upper stream (under the Yeoncho weir), while the proportion of particles smaller than sand (less than 19mm) increased toward the downstream. The population and the size of the individuals decreased rapidly in the downstream where water stagnated near the Yeoncho weir, and the salt water joined. The results indicated that Clithon retropictus had a high tolerance to salinity, but the adaptability was weaker toward the extremes since the population, and the size tended to decrease as the salinity increased. The correlation analysis revealed that both salinity and soil particle size affected the population and individual size. The correlation between the individual size and salinity was -0.242 (P <0.01), indicating that the size decreased with increasing salinity. The correlation between individual size and coarse gravel having a particle size of 19mm or more was 0.420 (P <0.01), indicating that the size increased with increasing the particle size.