• Title/Summary/Keyword: Dense plasma

Search Result 208, Processing Time 0.021 seconds

Fabrication and Characteristics of Thermal Barrier Coatings in the La2O3-Gd2O3-ZrO2 System by Using Suspension Plasma Spray with Different Suspension Preparations (서스펜션의 준비방법에 따른 서스펜션 플라즈마 용사를 이용한 La2O3-Gd2O3-ZrO2 계 열차폐코팅의 제조와 특성)

  • Lee, Soyul;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • Rare-earth zirconates, including lanthanum zirconate and gadolinium zirconate, have been investigated as ones of the most promising candidates for next-generation thermal barrier coating (TBC) materials due to their excellent properties such as low thermal conductivity, chemical stability at high temperature and so on. In this study, TBCs with three compositions, in the $La_2O_3-Gd_2O_3-ZrO_2$ system with reduced rare-earth contents from $RE_2Zr_2O_7$ compositions, were fabricated by using suspension plasma spray with different suspension preparation methods. The phase formation, microstructure, and thermal properties of TBCs were examined. In particular, each coating exhibited single fluorite phase and a dense, vertically-separated microstructure. The potential of coatings with rare-earth zirconates for TBC applications was also discussed.

Fabrication and Characterization of 7.5 wt% Y2O3-ZrO2 Thermal Barrier Coatings Deposited by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 7.5 wt% Y2O3-ZrO2 열차폐코팅 제조 및 평가)

  • Lee, Won-Jun;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae;Lim, Dae-Soon;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.598-604
    • /
    • 2014
  • Considerable research efforts have been explored attempting to enhance the thermal durability of thermal barrier coatings (TBCs) at the high operating temperatures of gas turbines. In this study, the suspension plasma spray (SPS) process was applied to produce TBCs with a segmented structure by using an yttria-stabilized zirconia (YSZ) suspension. Four different experiment sets were carried out by controlling the ratio between surface roughness of the bond coat and feed stock size ($R_a/D_{50}$) in order to examine the effect of $R_a/D_{50}$ ratio on the microstructure of SPS-prepared coatings. When the $R_a/D_{50}$ had a high value of 11.8, a deposited thick coating turned out to have a cone-type columnar microstructure. In contrast, at the low $R_a/D_{50}$ values of 2.9 and 0.18, a deposited thick coating appeared to have a dense, vertically-cracked microstructure. However, with the very low $R_a/D_{50}$ value of 0.05 the coating was delaminated.

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가)

  • Kim, Ju-Hun;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Effect of Glass Frit Addition on Characteristics of Yttria Ceramics (이트리아 소결체의 특성에 글라스프릿 첨가가 미치는 영향)

  • Ji-Sun Lee;Sunwoog Kim;Mu-Kun Roh;Chang-Yong Oh;Jinho Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.303-308
    • /
    • 2024
  • The semiconductor and display industries require the development of plasma resistant materials for use in high density plasma etching process equipment. Yttria (Y2O3) is a ceramic material mainly used to ensure good plasma resistance properties, which requires a dense microstructure. In commercial production, a sintering process is applied to reduce the sintering temperature of Y2O3. In this study, the effect of the addition of glass frit to the sintered specimen was examined when manufacturing yttria sintered specimens for semiconductor process equipment parts. The Y2O3 specimen was shaped into a Ø50 mm size and then sintered at 1,600 ℃ for 1~8 h. The characteristics, X-ray diffraction pattern, densities, contraction rate of the specimen, and swelling of the surface of the Y2O3 specimens were investigated as a function of the sintering time and glass frit addition. The Y2O3 specimen exhibited a density of over 4.9 g/cm3 as the sintering time increased, and the swelling phenomenon characteristics were improved by glass frit, by controlling particle size.

Effect of platelet-rich plasma in Achilles tendon allograft in rabbits

  • Seok-Hong Park;Dong-Yub Kim;Won-Jae Lee;Min Jang;Seong Mok Jeong;Sae-Kwang Ku;Young-Sam Kwon;Sungho Yun
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.22.1-22.15
    • /
    • 2024
  • Background: Achilles tendon is composed of dense connective tissue and is one of the largest tendons in the body. In veterinary medicine, acute ruptures are associated with impact injury or sharp trauma. Healing of the ruptured tendon is challenging because of poor blood and nerve supply as well as the residual cell population. Platelet-rich plasma (PRP) contains numerous bioactive agents and growth factors and has been utilized to promote healing in bone, soft tissue, and tendons. Objective: The purpose of this study was to evaluate the healing effect of PRP injected into the surrounding fascia of the Achilles tendon after allograft in rabbits. Methods: Donor rabbits (n = 8) were anesthetized and 16 lateral gastrocnemius tendons were fully transected bilaterally. Transected tendons were decellularized and stored at -80℃ prior to allograft. The allograft was placed on the partially transected medial gastrocnemius tendon in the left hindlimb of 16 rabbits. The allograft PRP group (n = 8) had 0.3 mL of PRP administered in the tendon and the allograft control group (n = 8) did not receive any treatment. After 8 weeks, rabbits were euthanatized and allograft tendons were transected for macroscopic, biomechanical, and histological assessment. Results: The allograft PRP group exhibited superior macroscopic assessment scores, greater tensile strength, and a histologically enhanced healing process compared to those in the allograft control group. Conclusions: Our results suggest administration of PRP on an allograft tendon has a positive effect on the healing process in a ruptured Achilles tendon.

A Study on the Palladium Alloy Membrane for Hydrogen Separation (수소 정제용 팔라듐 합금 분리막 연구)

  • Woo, Byung-Il;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.232-239
    • /
    • 2009
  • This study presented the effect of membrane thickness on hydrogen permeability. Microvoids on the surface of the membrane should not exist for the exact values of hydrogen permeability. Pd-Cu-Ni hydrogen alloy membranes were fabricated by Ni powder sintering, substrate plasma pretreatment, sputtering and Cu reflow process. And this leaded to void-free surface and dense film of Pd-Cu-Ni hydrogen alloy membrane. Hydrogen permeation test showed that hydrogen permeability increased from 2.7 to $15.2ml/cm^2{\cdot}min{\cdot}atm^{0.5}$ as membrane thickness decreased from 12 to $4{\mu}m$. This represented the similar trend as a hydrogen permeability of pure palladium membrane based on solution-diffusion mechanism.

Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings (듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong;Hwang, Ju Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

A ray-based approach to scattering from inhomogeneous dielectric objects (전파경로 투적에 의한 비균질 유전체의 전자파 산란)

  • Kim, Hyeongdong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.31-37
    • /
    • 1995
  • A ray-based approach is developed to calculate the scattering from inhomogeneous dielectric objects. This approach is a natural extension of the "shooting and bouncing ray(SBR)" technique developed earlier for calculating the radar cross section of cavity structures and complex targets. In this formulation, a dense grid of rays representing the incident field is shot toward the scatterer. The curved trajectory, amplitude, phase and polarization of the ray fields inside the inhomogeneous object are computed numerically based on the laws of geometrical optics. The contributions of the exting rays to the exterior scattered field are then calculated by using the equivalence principle in conjunction with " a ray-tube integration" scheme. The ray-based approach is applied for the effect of an arcjet plasma plume on satellite reflector performance and backscattering from inhomogeneous objects.

  • PDF

Apatite Formation on Polythylene Modified with Silanols by Grafting of Vinyltrimethoxysilane and Subsequent Hydrolysis

  • Kokubo, Tadashi;Uenoyama, Mayo;Kim, Hyun-Min;Minoda, Masahiko;Miyamoto, Takeaki;Nakamura, Takashi
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.265-269
    • /
    • 1999
  • Polyethylene was modified with silanol groups on its surface by photografting of vinyltrimethoxysilane in vapor phase by using benzophenon as a polymerization initiator and by hydrolyzing the methoxysilane groups into the silanol groups with HCI solution. The modified polyethylene formed a dense and homogeneous apatite layer on its surface in a solution with ion concentrations 1.5 times those of human blood plasma within 21 days. This kind of biomimetic process could provide techniques for fabricating apatite-polymer composites with three dimensional structure analogous to the natural bone.

  • PDF

A Methodological Study of the Wear-Resistant Property Improvement on the Thermal Spray Coating for Capstan (Capstan용 용사코팅의 내마모 특성 향상 방안)

  • 어순철
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • Thermal spray coating process has proven to be effective at producing hard, dense, wear resistance coatings on the relatively mild substrates. Among several spraying techniques, HVOF (High Velocity Oxygen Fuel) and plasma coating processes, which are preferentially used for the wear resistance application such as capstans, have been applied in this study. The effects of pre-treatment, it-process and post-treatment parameters on the wear and mechanical properties of WC+12%Co, Cr3C2 and Al2O3 powder coatings have been investigated and correlated with the microstructures. The results indicated that the carbide coating was more preferable to the oxide coatings and the post-treatments consisting of vacuum annealing and sealing on carbide coatings led to significant improvements in wear resistance, adhesive strength and coating phase stabilization over the other processing techniques in this application.

  • PDF