KSII Transactions on Internet and Information Systems (TIIS)
/
제14권6호
/
pp.2310-2332
/
2020
In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.
3차원 프린터나 깊이 카메라 등을 이용하면 실세계의 3차원 메쉬 데이터를 손쉽게 생성할 수 있지만, 이렇게 생성된 데이터에는 필연적으로 불필요한 노이즈가 포함되어 있다. 따라서, 온전한 3차원 메쉬 데이터를 얻기 위해서는 메쉬 디노이징 작업이 필수적이다. 하지만 기존의 수학적인 디노이징 방법들은 전처리 작업이 필요하며 3차원 메쉬의 일부 중요한 특징들이 사라지는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 딥 러닝 기반의 3차원 메쉬 디노이징 기법을 소개한다. 구체적으로 본 논문에서는 인코더와 디코더로 구성된 컨볼루션 기반 오토인코더 모델을 제안한다. 메쉬 데이터에 적용하는 컨볼루션 연산은 메쉬 데이터를 구성하고 있는 각각의 정점과 그 주변의 정점들 간의 관계를 고려하여 디노이징을 수행하며, 컨볼루션이 완료되면 학습 속도 향상을 위해 샘플링 연산을 수행한다. 실험 결과, 본 논문에서 제안한 오토인코더 모델이 기존 방식보다 더 빠르고 더 높은 품질의 디노이징된 데이터를 생성함을 확인하였다.
Raman spectrometers are studied and developed for the military purposes because of their nondestructive inspection capability to capture unique spectral features induced by molecular structures of colorless and odorless chemical warfare agents(CWAs) in any phase. Raman spectrometers often suffer from random noise caused by their detector inherent noise, background signal, etc. Thus, reducing the random noise in a measured Raman spectrum can help detection algorithms to find spectral features of CWAs and effectively detect them. In this paper, we propose a denoising autoencoder for Raman spectra with a loss function for sample efficient learning using noisy dataset. We conduct experiments to compare its effect on the measured spectra and detection performance with several existing noise reduction algorithms. The experimental results show that the denoising autoencoder is the most effective noise reduction algorithm among existing noise reduction algorithms for Raman spectrum based standoff detection of CWAs.
무응답 및 결측값은 표본 탈락, 설문조사에 대한 답변 회피 등으로 발생하며 정보의 손실 및 편향된 추론의 가능성이 있는 문제가 발생하게 되며, 이 경우 결측값을 적절한 값으로 바꾸는 대체가 필요하게 된다. 본 논문에서는 결측값에 대한 대체 방법으로 제안되었던 평균 대체, 다중회귀 대체, 랜덤 포레스트 대체, K-최근접 이웃 대체, 그리고 딥러닝을 기본으로 한 오토인코더 대체와 잡음제거 오토인코더 대체 방법을 비교한다. 결측값을 대체하는 이러한 방법들에 대해 설명하고, 연속형의 모의실험 데이터와 실제 데이터에 접목시켜 각 방법들을 비교하였다. 비교 결과 대부분의 경우에서 다중 대체 방법인 랜덤 포레스트 대체 방법과 잡음제거 오토인코더 대체 방법의 성능이 좋았음을 확인하였다.
Underwater acoustic communication channel is influenced by environmental parameters such as multipath, background noise and scattering. Therefore, a transmitted signal is influenced by the sea surface and the sea bottom boundaries, and a received signal shows a delay spread. These factors create a noise in the image and degrade the quality of underwater acoustic communication. To solve these problems, in this paper, we evaluate the performance of an underwater acoustic communication model using a denoising auto-encoder used for unsupervised learning. Noise images generated by the underwater multipath channel were collected and used as training data. Experimental results were analyzed as a PSNR parameter that expressed the noise ratio of the two images.
Loose parts monitoring and detecting alarm type in real Nuclear Power Plant have challenges such as background noise, insufficient alarm data, and difficulty of distinction between alarm data that occur during start and stop. Although many signal processing methods and alarm determination algorithms have been developed, it is not easy to determine valid alarm and extract the meaning data from alarm signal including background noise. To address these issues, this paper proposes a denoising autoencoder-based majority vote classification. Training and test data are prepared by acquiring alarm data from real NPP and simulation facility for data augmentation, and noisy data is reproduced by adding Gaussian noise. Using DAEs with 3, 5, 7, and 9 layers, features are extracted for each model and classified into neural networks. Finally, the results obtained from each DAE are classified by majority voting. Also, through comparison with other methods, the accuracy and the false alarm rate are compared, and the excellence of the proposed method is confirmed.
4차 산업혁명 시대에 접어들어 데이터 기반의 의사결정이 보편화되고 있다. 하지만 데이터 품질이 확보되지 않은 채 수행되는 데이터 분석은 왜곡된 결과를 낳을 가능성이 존재한다. 수자원 관리의 기초가 되는 수위 데이터도 마찬가지로 결측, 스파이크, 잡음 등 다양한 품질 문제를 가진다. 본 연구에서는 잡음으로 인해 발생하는 데이터 품질 문제를 해결하고자 하였다. 잡음은 데이터의 트렌드 분석을 어렵게 하고 비정상적인 이상치를 생성할 가능성이 있다. 본 연구는 이러한 문제를 해결하기 위해 Wavelet Transform을 이용한 잡음 제거 접근 방안을 제안한다. Wavelet Transform은 신호처리에 주로 사용되는 방법으로 잡음 제거에 효과적인 것으로 알려져 있으며 수집된 데이터의 정답 데이터(True value) 수집을 요구하지 않으므로 시간과 비용을 줄일 수 있다는 점에서 적용이 용이한 편이다. 본 연구는 Wavelet Transform의 성능 평가를 위해 대표적인 머신러닝 기반 잡음 제거 방법인 Denoising Autoencoder와 성능 비교를 수행하였다. 그 결과 Wavelet Transform 중 Coiflets 함수는, Denoising Autoencoder에 비해 Mean Absolute Error, Mean Absolute Percentage Error, Mean Squared Error 등 모든 측면에서 우수한 성능을 보이는 것으로 나타났다. 이러한 결과는 환경에 맞는 적절한 웨이블릿 함수의 선택을 통한 잡음 문제를 효과적으로 해결할 수 있음을 시사한다. 본 연구는 수위 데이터의 품질을 향상시켜 수자원 관리 결정의 신뢰성에 기여하는 강력한 도구로서 Wavelet Transform의 잠재력을 확인한 의의가 있다.
오토인코더(Autoencoder)는 입력 계층과 출력 계층이 동일한 딥러닝의 일종으로 은닉 계층의 제약 조건을 이용하여 입력 벡터의 특징을 효과적으로 추출하고 복원한다. 본 논문에서는 CAPTCHA 이미지 중 하나의 숫자와 자연배경이 혼재된 영역을 대상으로 일련의 다양한 오토인코더 모델들을 적용하여 잡음인 자연배경을 제거하고 숫자 이미지만을 복원하는 방법들을 제시한다. 제시하는 복원 이미지의 적합성은 오토인코더의 출력을 입력으로 하는 소프트맥스 함수를 활성화 함수로 사용하여 검증하고, CAPTCHA 정보를 자동으로 획득하는 다른 방법들과 비교하여, 본 논문에서 제시하는 방법의 우수함을 검증하였다.
As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.
온라인 게시판 글과 채팅창에서 주고받는 대화는 실제 사용되고 있는 구어체 특성이 잘 반영된 텍스트 코퍼스로 음성인식의 언어 모델 재료로 활용하기 좋은 학습 데이터이다. 하지만 온라인 특성상 노이즈가 많이 포함되어 있기 때문에 학습에 직접 활용하기가 어렵다. 본 논문에서는 사용자 입력오류가 다수 포함된 문장에서의 한글 오류 보정을 위한 sequence-to-sequence Denoising Autoencoder 모델을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.