• 제목/요약/키워드: Dendrite Arm Spacing

검색결과 57건 처리시간 0.079초

Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향 (The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy)

  • 이만길;유영수;조창용;이재현
    • 한국주조공학회지
    • /
    • 제27권6호
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

니켈계 초내열합금 CM247LC의 일방향응고 시 미세조직 형성거동 분석 (Analysis of Microstructural Evolution During Directional Solidification of Ni-Base Superalloy CM247LC)

  • 서성문;정희원;윤대원;안영근;이재현;유영수
    • 한국주조공학회지
    • /
    • 제33권5호
    • /
    • pp.193-203
    • /
    • 2013
  • The Ni-base superalloy CM247LC was directionally solidified (DS) using the Bridgman-type furnace to understand the effect of the chill plate on the microstructural evolution, such as dendrite arm spacing, microporosity, and MC-type carbide. The DS process was also modeled by the PROCAST to predict the solidification rate, thermal gradient, and resultant cooling rate in the entire length of the DS specimen. Due to the quenching effects of chill plate, four distinct areas were found to form in the specimen, in which the solidification rate was changed, during DS at a given withdrawal rate of 0.083 mm/s. Among the microstructural features investigated, the dendrite arm spacings and average size of the MC-type carbide near the chill plate were found to be influenced by the quenching effect of the chill plate. However, no significant influence was found on the size and volume fraction of microporosity, and the volume fraction of the MC-type carbide. The relationship between the microstructural features and the solidification variables was also analyzed and discussed on the basis of a combination of experimental and modeling results.

Al-7wt%Si-0.3wt%Mg 합금의 응고 및 미세조직에 미치는 Sr 첨가와 금형예열온도의 영향 (The Effect of Sr Addition and Mold Preheating Temperature on the Solidification and Microstructure of Al-7wt%Si-0.3wt%Mg Alloy)

  • 권일수;김경민;윤의박
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.608-614
    • /
    • 1997
  • The effect of mold preheating temperature on the microstructure such as grain size, eutectic silicon morphology was investigated for the Al-7wt%Si-0.3wt%Mg alloy. Microstructural variations have been characterized as a function of Sr addition and cooling rate during solidification. Microstructures were correlated with cooling rate, local solidification time and eutectic nucleation temperature, etc. In this study, Sr addition caused increase of local solidification time, undercooling and reduction of eutectic plateau temperature. In logarithmic scale, local solidification time was in inverse proportion to cooling rate. Eutectic nucleation temperature was in inverse proportion to cooling rate of logarithmic scale. Increasing the cooling rate refined dendrite arm spacing and eutectic silicon. Dendrite arm spacing was logarithmically in inverse proportion to cooling rate. Without modifier addition, eutectic silicon was modified at cooling rate of $7^{\circ}C/s$ or higher.

  • PDF

고압주조한 Al-10% Mg 합금의 주조조직 및 기계적 성질에 관한 연구 (A Study on Cast Structure and Mechanical Properties of Al-10% Mg Alloy Solidified Under High Hydraulic Pressure)

  • 정우현;정종연;이종남
    • 한국주조공학회지
    • /
    • 제3권1호
    • /
    • pp.28-36
    • /
    • 1983
  • 본 실험에서는 고정수압하에서 응고한 Al-l0% Mg합금의 조직 및 기계적 성질에 미치는 가압력의 영향을 조사하기 위하여 압력을 $0㎏f/cm^2$, 500$kgf/cm^2$, $1500㎏f/cm^2$$2000㎏f/cm^2$로 변화시키면서 냉각곡선, 조직검사, 기계적시험 및 비중 측정을 하여 얻은 결론은 다음과 같다. 1. 가압력이 증가할수록 합금의 냉각속도는 증가하였다. 2. 기공 및 수축공의 발생은 가압에 의해 억제되었다. 3. 가압력이 증가할수록 dendrite arm spacing은 감소하였다. 4. 기계적 성질 및 비중은 가압력이 증가함에 따라 증가하였다.

  • PDF

주형점결재(鑄型粘結材)에 의한 Al-Cu합금(合金)의 응고조직(凝固組織)에 관(關)한 연구(硏究) (Effects of Mold Binders on Solidification Structures of Al-Cu Alloys)

  • 최창옥;이계완
    • 한국주조공학회지
    • /
    • 제6권1호
    • /
    • pp.36-46
    • /
    • 1986
  • The effects of various kind of molds on cast structures were studied in Al-4.5% Cu and Al-8% Cu alloys. Five kinds of sand molds which were mixed with different binders and a metal mold were used. Density, dendrite arm spacing and dendrite arm length of the cast alloys were greatly affected by quantities and materials of mold binders. The macrostructures examined were entirely equiaxed grains with little influences of types of molds. It is possibly due to the separation of growing crystals from the mold wall at the inital stage of solidification.

  • PDF

선단과냉을 고려한 이원합금의 주상 수지상응고 모델 (A model for columnar-dendritic solidification of binary alloys accounting for dendrite tip undercooling)

  • 유호선
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.698-707
    • /
    • 1998
  • A simplified model for predicting microsegregation during columnar-dendritic solidification of binary alloys is developed, in which back diffusion, dendrite arm coarsening and dendrite tip undercooling are simultaneously incorporated. The inclusion of tip undercooling is accomplished by modifying the initial conditions of the existing solute diffusion model, in such forms that tip undercooling depresses the beginning of solidification below the liquidus temperature, and that the secondary arm spacing evolves in accordance with the minimum undercooling theory. Sample calculations for the well-known benchmark system show that the present predictions not only consist with the extablished limiting cases, but also agree favorably with the available experimental data within a reasonable tolerance. In particular, a typical decreasing trend in the eutectic fraction at high cooling rates is successfully resolved. Comparison of the individual and combined effects of characteristic parameters in reference with the limiting cases reveals the interactions among parameters. Every parameter plays the role of reducing the eutectic fraction, and the degree of influence depends primarily on the cooling rate. Coarsening enhances the effect of tip undercooling, while suppressing that of back diffusion. A vigorous back diffusion seems to restrain the apperance of the undercooling effect. Overall, each contribution of the three parameters to microsegregation is estimated to be of the same order, which suffices to justify the present study.

Al6Si2Cu 알루미늄 합금의 기계적 물성 향상을 위한 이단계 고용화 열처리 (Two-step Solution Treatment for Enhancement of Mechanical Properties of AlSiCu Aluminum Alloy)

  • 박상규;김정석
    • 열처리공학회지
    • /
    • 제31권3호
    • /
    • pp.97-103
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of AlSiCu aluminum alloy by the two-step solution heat treatment. The microstructure of gravity casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 mm. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases are generated. The eutectic Si phases are fragmented and globularized with solution heat treatment. Also, the $Al_2Cu$ intermetallic phase is resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ might be a optimum condition for enhancement of mechanical properties of AlSiCu aluminum alloy.

A356 중공 주조 샤시 부품에서의 국부적인 인장 변형 특성에 미치는 미세 조직 분석 (Microstructural Analysis of Local Tensile Deformation Characteristics in A356 Hollow Sand Cast Chassis Part)

  • 김재중;고영진;임종대
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.1-6
    • /
    • 2010
  • Aluminum rear lower arm is designed for luxury sedan and manufactured by hollow sand casting in the present study. Here we present the relationship between local microstructure and coupon tensile test in the rear lower arm. The characteristics of the local tensile deformation are supposed to be dependent upon Si distribution and DAS (dendrite arm spacing). Si distribution affects the yield strength and DAS affects the elongation of local area in the part, respectively.

원심분무 입자의 비산 및 냉각 모델링 (Modelling for the Flying and Cooling Behaviors of the Centrifugally Atomized Particles)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제3권1호
    • /
    • pp.25-32
    • /
    • 1996
  • Flying and solidification behaviors of the particles manufactured by centrifugal atomization were investigated. Both models were solved by the explicit FDM. Flying calculation supported the experimental results that the finer particles flied shorter than coarser particles and that particles flied shorter for lower rotation velocity than for higher velocity. Cooling curve and dendrite arm spacing were predicted by use of heat transfer analysis.

  • PDF

초내열합금 CM247LC의 조직 및 인장특성에 미치는 초기 일방향응고 조건의 영향 (Effect of Initial Solidification Condition During Directional Solidification on the Grain Growth and the Tensile Properties of Superalloy CM247LC)

  • 정재준;권석환;정의석;조창용;이재현
    • 한국주조공학회지
    • /
    • 제42권2호
    • /
    • pp.77-82
    • /
    • 2022
  • 일방향응고 초내열합금 CM247LC의 응고조건에 따른 조직과 기계적 특성을 고찰하기 위해 초기 응고조건을 인위적으로 변화시켜 일방향응고를 진행하였다. 초기 응고 조건은 알루미나 판의 삽입, 접종재의 삽입, Ni foil의 삽입과 냉각판에 직접 주입 등으로 조절하였으며, 이에 따라 초기 결정립의 수의 많은 차이를 보였으며 응고방향과 평행으로 성장하는 결정립의 형태 및 γ' 석출상의 크기 등에서도 많은 차이를 보였다. 냉각속도가 빠른 용탕의 냉각판에 직접 주입한 경우 많은 결정립, 미세한 γ'상 및 γ-γ'공정상 등이 나타났다. 빠른 냉각은 고체/액체 사이의 온도구배를 증가시켜 일방향응고 후 1차 수지상 간격을 미세하게 함으로써 우수한 인장특성을 갖게 하였다.