References
- Reed RC, The superalloys: Fundamentals and Applications, Cambridge Univ. press, NY, USA (2006) 121.
- Pinero SS, Pictraszkiewcz EF, Dube BP, Yee SJ, Levy RS, Hassan M, Valerio D and Hartmann SD, US patent 8172533, "Turbine blade internal cooling configuration" (2012).
- Acharya S and Mahmood G, The gas turbine handbook, NETL, DOE, USA (2007) 363.
- Versnyder FL and Shank ME, Mater. Sci. Eng., "The development of columnar grain and single crystal high temperature materials through directional solidification", 6 (1970) 213-247. https://doi.org/10.1016/0025-5416(70)90050-9
- McLean M, Directionally solidified materials for high temperature service, The Metal Society, London (1983) 11 151.
- http://www.esi-group.com/products/casting/casting-simulationsuite.
- Seo SM, Kim IS, Lee JH, Jo CY and Ogi K, J. Kor. Inst. Met. & Mater., "Prediction of solidification grain structure in the Ni-base superalloy CM247LC", 44 (2006) 44-54.
- Mills AF, Heat and mass transfer, Richard D Irwin, Inc., Massachusetts (1995) 1141.
- Seo SM, Kim IS, Lee JH, Jo CY, Miyahara H and Ogi K, Met. Mater. Int., "Grain structure and texture evolution during single crystal casting of the Ni-base superalloy CMSX-4", 15 (2009) 391-398. https://doi.org/10.1007/s12540-009-0391-2
- Gao SF, Liu L, Wang N, Zhao XB, Zhang J and Fu HZ, Metall. Mater. Trans. A, "Grain selection during casting Ni-base, single-crystal superalloys with spiral grain selector", 43A (2012) 3767-3775.
- Whitesell HS and Overfelt RA, Mater. Sci. Eng. A, "Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar- M247", A318 (2001) 264-276.
- Sims CT, Stoloff NS and Hagel WC, Superalloys II, John Wiley & Sons, New York (1987) 111.
- Seo SM, Kim IS, Lee JH, Jo CY, Miyahara H and Ogi K, Metall. Mater. Trans. A, "Eta phase and boride formation in directionally solidified Ni-base superalloy IN792+Hf", 38A (2007) 883-893.
- Lamm M and Singer RF, Metall. Mater. Trans. A, "The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483", 38A (2007) 1177-1183.
- Chen QZ, Jones N and Knowles DM, Acta Mater., "The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures", 50 (2002) 1095-1112. https://doi.org/10.1016/S1359-6454(01)00410-4
- Zhang J, Li J, Jin T, Sun X and Hu Z, J. Mater. Sci. Technol., "Effect of solidification parameters on the microstructure and creep property of a single crystal Ni-base superalloy", 26 (2010) 889-894.
- Zhou Y and Volek A, Mater. Sci. Eng. A, "Effect of carbon additions on hot tearing of a second generation nickel-base superalloy", 479 (2008) 324-332. https://doi.org/10.1016/j.msea.2007.06.076
-
Murakumo T, Kobayashi T, Koizumi Y and Harada H, Acta Mater., "Creep behaviour of Ni-base single-crystal superalloys with various
${\gamma}$ ' volume fraction", 52 (2004) 3737-3744. https://doi.org/10.1016/j.actamat.2004.04.028 - Balikci E, Raman A and Mirshams RA, Metall. Mater. Trans. A, "Influence of various heat treatments on the microstructure of polycrystalline IN738LC", 28A (1997) 1993-2003.
- Kurz W and Fisher DJ, Acta Metall., "Dendrite growth at the limit of stability: Tip radius and spacing", 29 (1981) 11-20. https://doi.org/10.1016/0001-6160(81)90082-1
- Flemings MC, Solidification processing, McGraw-Hill, New York (1974) 146.
- Carter P, Cox DC, Gandin CA and Reed RC, Mater. Sci. Eng. A, "Process modelling of grain selection during the solidification of single crystal superalloy castings", A280 (2000) 233-246.
- Bhambri AK, Kattmis TZ and Morral JE, Metall. Trans. B, "Cast microstructure of Inconel 713C and its dependence on solidification variables", 6B (1975) 523-537.
-
Seo SM, Lee JH, Yoo YS, Jo CY, Mihayara H and Ogi K, Metall. Mater. Trans. A, "A comparative study of the
$\gamma/{\gamma}'$ eutectic evolution during the solidification of Ni-base superalloys", 42A (2011) 3150-3159. - Milenkovic S, Sabirov I and Llorca J, Mater. Lett., "Effect of the cooling rate on microstructure and hardness of Mar-M247 Ni-based superalloy", 73 (2012) 216-219. https://doi.org/10.1016/j.matlet.2012.01.028
- Lin CS and Sekhar JA, J. Mater. Sci., "Solidification morphology and semi-solid deformation in superalloy Rene 108: Part IV Directionally solidified microstructures", 29 (1994) 5005-5013. https://doi.org/10.1007/BF01151091
- Hong HU, Choi BG, Kim IS, Yoo YS and Jo CY, J. Mater. Sci., "Characterization of deformation mechanisms during low cycle fatigue of a single crystal nickel-based superalloy", 46 (2011) 5245-5251. https://doi.org/10.1007/s10853-011-5462-3
- Orlov MR, Russian Metallurgy, "Pore formation in singlecrystal turbine rotor blades during directional solidification", 2008 (2008) 56-60. https://doi.org/10.1134/S0036029508010114
- Lin CS and Sekhar JA, J. Mater. Sci., "Solidification morphology and semisolid deformation in the superalloy Rene 108: Part III Equiaxed solidified microstructures", 29 (1994) 3637-3642. https://doi.org/10.1007/BF00357329
- Brundidge CL, Vandrasek D, Wang B and Pollock TM, Metall. Mater. Trans. A, "Structure refinement by a liquid metal cooling solidification process for single-crystal nickelbase superalloys", 43A (2012) 965-976.
- Anton DL and Giamei AF, Mater. Sci. Eng., "Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy", 76 (1985) 173-180. https://doi.org/10.1016/0025-5416(85)90091-6
- Roskosz S and Adamiec J, Mater. Charact., "Methodology of quantitative evaluation of porosity, dendrite arm spacing and grain size in directionally solidified blades made of CMSX-6 nickel alloy", 60 (2009) 1120-1126. https://doi.org/10.1016/j.matchar.2009.01.024
- Wei CN, Bor HY and Chang L, Mater. Sci. Eng. A, "The effects of carbon content on the microstructure and elevated temperature strength of a nickel-base superalloy", 527 (2010) 3741-3747. https://doi.org/10.1016/j.msea.2010.03.053
- Al-Jarba KA and Fuchs GE, J. Metals, "Carbon-containing single-crystal nickel-based superalloys: Segregation behavior and carbide formation", 56 (2004) 50-55.
Cited by
- Evaluation and Control of Liquation Cracking Susceptibility for CM247LC Superalloy Weld Heat-Affected Zone via Visualization-Based Varestraint Test vol.59, pp.7, 2021, https://doi.org/10.3365/kjmm.2021.59.7.445
- Effect of ERNiFeCr-2 Filler Metal on Solidification Cracking Susceptibility of CM247LC Superalloy Welds vol.59, pp.10, 2013, https://doi.org/10.3365/kjmm.2021.59.10.698