• Title/Summary/Keyword: Demineralized freeze dried bone allograft

Search Result 9, Processing Time 0.028 seconds

The Effect of Demineralized Freeze - Dried Bone Allograft in Guided Bone Regeneration on Supra - Alveolar Peri - Implant Defects in Dogs (성견의 치조 연상 임플란트주위 결손부에서의 탈회냉동건조골과 e-PTEE막의 효과)

  • Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.57-74
    • /
    • 2001
  • The purpose of this study was to evaluate the adjunctive combined effect of demineralized freeze-dried bone allograft(DFDB) in guided bone regeneration on supra-alveo-lar peri-implant defect. Supra-alveolar perio-implant defects, 3mm in height, each including 4 IMZ titanium plasma-sprayed implants were surgically created in two mongrel dogs. Subsequently, the defects were treated with 1 of the following 3 modalities: Control) no membrane or graft application, Group1) DFDB application, Group2) guided bone regeneration using an expanded polytetra-fluoroethylene membrane, Group3) guided bone regeneration using membrane and DFDB. After a healing period of 12-week, the animals were sacrificed, tissue blocks were harvested and prepared for histological analysis. Histologic examination were as follows; 1. New bon formation was minimal in control and Group 1, but considerable new bone formation was observed in Group 2 and Group 3. 2. There was no osteointegration at the implant-bone interface in the high-polished area of group2 and Group 3. 3. In fluorescent microscopic examination, remodeling of new bone was most active during week 4 and week 8. There was no significant difference in remodeling rate between group 2 and group 3. 4. DFDB particles were observed, invested in a connective tissue matrix. Osteoblast activity in the area was minimal. The results suggest that guided bone regeneration shows promising results in supra-alveolar peri-implant defects during the 12 week healing period although it has a limited potential in promoting alveolar bone regeneration in the high-polished area. There seems to be no significant adjunctive effect when DFDB is combined with GBR.

  • PDF

The effect of the freeze dried bone allograft and gel/putty type demineralized bone matrix on osseous regeneration in the rat calvarial defects (백서 두개골 결손부에서 동결건조골과 gel/putty 형 탈회골기질의 골재생효과)

  • Kim, Deug-Han;Hong, Ji-Youn;Pang, Eun-Kyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.349-358
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of the Freeze Dried Bone Allograft and Demineralized Bone Matrix on osseous regeneration in the rat calvarial defects. Methods: Eight mm critical-sized calvarial defects were created in the 80 male Sprague-Dawley rats. The animals were divided into 4 groups of 20 animals each. The defects were treated with Freeze Dried Bone Allograft($SureOss^{TM}$), Demineralized Bone Matrix($ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty), or were left untreated for sham-surgery control and were evaluated by histologic and histomorphometric parameters following a 2 and 8 week healing intervals. Statistical analysis was done between each groups and time intervals with ANOVA and paired t-test. Results: Defect closure, New bone area, Augmented area in the $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than in the sham-surgery control group at each healing interval(P < 0.05). In the New bone area and Defect closure, there were no significant difference between experimental groups. Augmented area in the $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups were significantly greater than $SureOss^{TM}$ group at 2weeks(P < 0.05), however there was no significant difference at 8 weeks. Conclusions: All of $SureOss^{TM}$, $ExFuse^{TM}$ Gel, $ExFuse^{TM}$ Putty groups showed significant new bone formation and augmentation in the calvarial defect model.

Comparison of the bone healing capacity of autogenous bone, demineralized freeze dried bone allograft, and collagen sponge in repairing rabbit cranial defects

  • Hur, Jung-Woo;Yoon, Suk-Ja;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Objectives: This study sought to evaluate the efficacy of collagen graft materials, as compared to other graft materials, for use in healing calvarial defects in rabbits. Materials and Methods: Ten mm diameter calvarial defects were made in ten rabbits. The rabbits were then divided into 4 groups: control, autogenous bone graft, SureOss graft, and Teruplug graft. Bone regeneration was evaluated using histological and radiographic methods. Results: Based on visual examination, no distinct healing profile was observed. At 4 weeks after treatment, histological analysis showed there was no bone regeneration in the control group; however, at 8 weeks after treatment, new bone formation was observed around the margin of the defective sites. In the autogenous bone graft group, new bone formation was observed at 4 weeks after treatment and mature bone was detected around the grafted bone after 8 weeks. In the SureOss graft group, at 4 weeks after treatment, acute inflammatory and multinuclear cells were noted around the grafted materials; at 8 weeks after treatment, a decrease in graft materials coupled with new bone formation were observed at the defective sites. In the Teruplug graft group, new bone formation was detected surrounding the bone margin and without signs of inflammation. There were statistically significant differences observed between the graft and control group in terms of bone density as evidenced by radiographic analysis using computed tomography (P<0.05), particularly for the autogenous bone graft group (P<0.001). Conclusion: These results suggested that autogenous bone, SureOss and Teruplug have the ability to induce bone regeneration as compared to an untreated control group. The osteogenic potential of Teruplug was observed to be lower than that of autogenous bone, but similar to that of SureOss.

In vitro assay for osteoinductive activity of different demineralized freeze-dried bone allograft

  • Vaziri, Shahram;Vahabi, Surena;Torshabi, Maryam;Hematzadeh, Somayeh
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.224-230
    • /
    • 2012
  • Purpose: Various bone graft materials have been used for periodontal tissue regeneration. Demineralized freeze-dried bone allograft (DFDBA) is a widely used bone substitute. The current widespread use of DFDBA is based on its potential osteoinductive ability. Due to the lack of verifiable data, the purpose of this study was to assess the osteoinductive activity of different DFDBAs in vitro. Methods: Sarcoma osteogenic (SaOS-2) cells (human osteoblast-like cells) were exposed to 8 mg/mL and 16 mg/mL concentrations of three commercial types of DFDBA: Osseo+, AlloOss, and Cenobone. The effect of these materials on cell proliferation was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. The osteoinductive ability was evaluated using alizarin red staining, and the results were confirmed by evaluating osteogenic gene expression using reverse transcription polymerase chain reaction (RT-PCR). Results: In the SaOS-2 cells, an 8 mg/mL concentration of Osseo+ and Cenobone significantly increased cell proliferation in 48 hours after exposure (P<0.001); however, in these two bone materials, the proliferation of cells was significantly decreased after 48 hours of exposure with a 16 mg/mL concentration (P<0.001). The alizarin red staining results demonstrated that the 16 mg/mL concentration of all three tested DFDBA induced complete morphologic differentiation and mineralized nodule production of the SaOS-2 cells. The RT-PCR results revealed osteopontin gene expression at a 16 mg/mL concentration of all three test groups, but not at an 8 mg/mL concentration. Conclusions: These commercial types of DFDBA are capable of decreasing proliferation and increasing osteogenic differentiation of the SaOS-2 cell line and have osteoinductive activity in vitro.

Healing Effects of Demineralized Freeze - Dried Bone Allograft and Deproteinized Bovine Bone Mineral on Periodontal Fenestration Defect in Rats (탈회 동결 건조골과 탈단백 우골의 백서 치조골 천공결손에 대한 치유 효과)

  • Shin, Joong-Ho;Kwon, Young-Hyuk;Park, Jun-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.73-91
    • /
    • 2001
  • The present study was performed to compare effects of demineralized freeze-dried bone allograft(DFDBA) with deproteinized bovine bone mineral(DBBM) on periodontal fenestration defect in rats. Twelve adult male rats weighing 500 to 540 grams were used in this study. Periodontal fenestration defects were surgically created with tapered fissure bur(${\Phi}1mm$) at the left side of buccal surface of the mandible. The defect size was from anterior border of the first molar to anterior of the ascending ramus mesiodistally and from just below the alveolar crest to apically 1.5-2mm area apicocoronally with 2mm in depth. Rats were divided into control group, test group I and II. Four defects were assigned to the test group I grafted with DBBM and other 4 defects were assigned to the test group II grafted with DFDBA. The rest of defects were the negative control group. At 10 days and 35 days after surgery, 12 rats were sacrificed through intracardiac perfusion and specimens were obtained prepared with Hematoxylin-Eosin stain for light microscopic evaluation. The results of this study were as follows : 1. In the control group, new bone, osteoid, dense connective tissue were observed in the defects at 10 days. new bone formation was not found but loose connective tissue was formed in the defect and fibrous encapsulation of graft materials was shown in two test groups at 10 days. 2. In all groups, new bone formation was shown in the defect at 35 days. And in the control group, bone formation increased at 35 days than at 10 days. 3. In the test group I and II at 35 days, graft materials were combined with new bone and joined host bone. There was very close contact between new bone, graft materials, and host bone with no gaps. 4. In the test group I and II, new bone formation was similar to that in the control group but not exeeded. In conclusion, in the test group I new bone formation was similar to that in the test group II at 35 days, but there was infiltration of inflammatory cells at 10 days. DFDBA and DBBM were considered as the biocompatible graft materials and effective in the regeneration of new bone.

  • PDF

EXPERIMENTAL STUDY ON HEALING PROCESS OF AUTOGENIC DEMINERALIZED BONE (자가 탈회골의 조직반응에 관한 실험적 연구)

  • Lee, Jae-Eun;Lee, Dong-Keun;Um, In-Woong;Kim, Young-Jo;Kim, Jang-Yeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.15 no.3
    • /
    • pp.199-210
    • /
    • 1993
  • Many surgeons are on the point of bone excision and reconstruction of the bone defects by autograft. xenograft, and allograft in the treatment of begin and malignant tumors of bone. Of all type of bone grafts, we received the autograft as the best ideal bone graft. Of autogenic bone graft, replantation of excised autogenic bone for reconstructiong the bone defects has been the ideal method until now, but early bone healing reponses and tumor cell devitalization after replantation of excised autogenic bone have not been identified for clinical applications. So, to evaluate bone healing response after replantation in rabbit's calvarial bone, we divided the experimental group into three groups. Group 1 is a fresh autogenous bone group. Group 2 is a deep frozen group. Group 3 is freeze-dried demineralized group. Obtained result were as followed: 1. Inflammatory cell infiltration appeared at I week and disappeared at 4 weeks in all experimental group, Especially, severe inflammatory cell infiltration showed in fresh autogenous bone group at 2 weeks. Group 3 is the least showing group on the point of inflammatory cell infiltration. 2. Osteoblastic activity evenly increased upto 4 weeks and maintained to 6 weeks and decreased after this period, especially osteoblastic activity in group 2 is less than group 1 and group 3. We can't discriminate between osteoblastic activity of group 1 and that of group 3. 3. In new bone formation, group 3 was more active than any other groups at early stage, but there were little differences among three experimental groups at later state. 4. Bone resorption around the grafted bone slightly appeared at 1 week and disappeared at 4 weeks in all experimental groups. We can find the more bone resorption in group 2 at 2 weeks than any other groups. We could suggest, as appears from our results, that freeze-dried deminiralized bone graft is the useful bone graft in the clinical applications of excised autogenic bone.

  • PDF

Effect of Enamel Matrix Derivative on Guided Bone Regeneration with Intramarrow Penetration (골수내천공을 동반한 골유도재생술시 법랑기질유도체의 효과)

  • Lee, Young-Jong;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.393-410
    • /
    • 2004
  • The purpose of this study was to investigate effect of enamel matrix derivative on guided bone regeneration with intramarrow penetration in rabbits. Eight adult male rabbits (mean BW 2Kg) were used in this study. Intramarrow penetration defects were surgically created with round carbide bur(HP long #6) on calvaria of rabbits. Defects were assigned to the control group grafted with mixture of the same quantity of demineralized freeze-dried bone allograft and deproteinized bovine bone mineral. Then, guided bone regeneration was carried out using resorbable membrane and suture. Enamel matrix derivative applied to defects was assigned to the test group. And treated as same manners as the control group. At 1, 2, 3 and 8 weeks after the surgery, animals were sacrificed, specimens were obtained and stained with Hematoxylin-Eosin for light microscopic evaluation. The results of this study were as follows : 1. At 1, 2 and 3 weeks, no differences were observed between the control group and the test group in the aspect of bone formation around bone graft. 2. Proliferation of blood capillary was faster in the test group than in the control group. 3. Bone regeneration in intramarrow penetration was faster in the test group than in the control group. 4. At 8 weeks, new osteoid tissue formation around bone graft was more prominent in the test group than in the control group. From the above results, enamel matrix derivative might be considered as the osteopromotion material and effective in the guided bone regeneration with intramarrow penetration.

The Efficacy of the Graft Materials after Sinus Elevation: Retrospective Comparative Study Using Panoramic Radiography

  • Jeong, Tae Min;Lee, Jeong Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.4
    • /
    • pp.146-153
    • /
    • 2014
  • Purpose: This study compares and evaluates the efficacy of graft materials after maxillary sinus bone grafts with autogenous tooth bone graft material (AutoBT), demineralized freeze-dried bone allograft (DFDBA) and deproteinized bovine bone mineral (DBBM). Methods: The study involved 30 sinuses in 26 patients who visited the Division of Oral and Maxillofacial Surgery, Department of Dentistry in Ajou University Hospital and received either AutoBT, DFDBA or DBBM with sinus elevation using the lateral window technique. Sinus graft height was measured before, immediately after, and six months after bone graft with panoramic radiography and the height changes of the sinus floor was compared according to the graft materials. Results: After six months, the decrease ratio of graft heights were 13.57% for AutoBT group, 14.30% for DFDBA group, and 11.92% for DBBM group. There was no statistically significant difference. Conclusion: The new maxillary sinus floor formed by the upper border of bone graft material, can repneumatize after the maxillary sinus elevation. Thus, long-term stability of sinus graft height represents an important factor for implant success. We found that the three graft materials for sinus elevation do not differ significantly and all three graft materials showed excellent resistance to maxillary sinus repneumatization. However, due to the special circumstances of the maxillary sinus and small sample, the actual difference between the three graft materials may not have been detectable. Therefore further study needs to be conducted for more reliable study results.

Guided Tissue Regeneration Using Barrier Membrane and Osseous Grafts in Surgically Created Furcation Defects in Dogs (성견의 외과적 치근이개부 골결손에 차폐막과 골이식재를 이용한 조직유도재생술시 치유양상)

  • Chung, Eun-Hee;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.4
    • /
    • pp.967-987
    • /
    • 1996
  • The present study was to evaluate the healing patterns of guided tissue regeneration( GTR) using resorbable $Vicryl^{(R)}$(polyglactin 910) mesh and nonresorbable expanded polytetrafluoroethylene(ePTFE) membrane with or without bone grafting using autogeneous bone and demineralized freeze-dried bone allograft(DFDBA) in the grade II furcation defects. Mucoperiosteal flaps were reflected buccally in the mandibular 2nd, 3rd and 4th premolar areas and furcation defects were created surgically by removing $5{\times}6mm$ alveolar bone in 4 dogs. Root surfaces were thoroughly debrided of periodontal ligament and cementum, and notches were placed on root surface at the most apical bone level. In the right and left mandibular quadrant, each tooth was received $Vicryl^{(R)}$ mesh(ACE Surgical Supply Co., USA) only, $Vicryl^{(R)}$ mesh with DFDBA, $Vicryl^{(R)}$ mesh with autogeneous bone grafts, ePTFE membrane($Core-tex^{(R)}$ membrane, W.L. Gore & Associates Inc., USA) only, ePTFE membrane with DFDBA or ePTFE membrane with autogeneous bone grafts. For the fluorescent microscopic examination, fluorescent agents were injected at 2, 4 and 8 weeks after surgery. Four weeks after surgery, 2 dogs were sacrificed and ePTFE membranes were removed from remaining 2 dogs, which were sacrificed at 12 weeks after surgery. Undecalcified tissues were embedded in methylmethacrylate and $10{\mu}m$ thick sections were cut in a buccolingual direction. These sections were stained with hematoxylin-eosin stain and Masson's trichrome stain, and evaluated by descriptive histology and linear measurements. The results were as follows : 1) $Vicryl^{(R)}$ mesh group showed less connective tissue attachment than ePTFE membrane group. 2) The combination of GTR using $Vicryl^{(R)}$ mesh and osseous grafts resulted in new attachment and new bone formation more than GTR using $Vicryl^{(R)}$ mesh only. 3) GTR using ePTFE membrane, with or without osseous grafts, enhanced periodontal regeneration. 4) Root resorption and dentoalveolar ankylosis were observed in the areas treated with the combination of GTR and DFDBA. It was suggested that the effect of adjunctive bone grafting in GTR procedure depends on the materials and the physical properties of barrier membranes. $Vicryl^{(R)}$ mesh performed a barrier function and the use of adjunctive bone grafting may enhance the periodontal regeneration.

  • PDF