• 제목/요약/키워드: Demand response

검색결과 1,219건 처리시간 0.036초

스마트 그리드 수요반응 시스템을 위한 그리디 스케줄링 기법 (Greedy Technique for Smart Grid Demand Response Systems)

  • 박래혁;엄재현;김중헌;조성래
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.391-395
    • /
    • 2016
  • 최근 몇 년간, 전력 소비의 급격한 증가로 인하여 전력 수급의 불안이 전 세계적으로 발생하였다. 또한 전력 예측의 불확실성 및 전력 발전량이 급격히 증가하게 되었다. 이러한 문제를 해결하기 위한 방안으로 전력망과 IT 기술을 결합한 스마트 그리드기술은 각광을 받고 있다. 스마트 그리드는 전력 최대 부하율을 낮추며 효율적인 전력 사용을 유도한다. 이를 위하여 스마트 그리드 시스템은 다양한 요금 정책, 수요반응 기술, 스마트 전자 기기들을 활용한다. 특히 전력 사용을 효율적으로 스케줄링 해주는 수요반응 기술은 스마트 그리드의 핵심 기술이다. 본 논문에서는 수요 반응 기술을 위한 그리디 기법을 제안한다. 제안하는 그리디 기법은 전력 요금의 최소화뿐만 아니라, 사용자의 편의성을 고려하며 시스템 정전을 방지하는 것을 목표로 한다.

The Consumer Rationality Assumption in Incentive Based Demand Response Program via Reduction Bidding

  • Babar, Muhammad;Imthias Ahamed, T.P.;Alammar, Essam A.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.64-74
    • /
    • 2015
  • Because of the burgeoning demand of the energy, the countries are finding sustainable solutions for these emerging challenges. Demand Side Management is playing a significant role in managing the demand with an aim to support the electrical grid during the peak hours. However, advancement in controls and communication technologies, the aggregators are appearing as a third party entity in implementing demand response program. In this paper, a detailed mathematical framework is discussed in which the aggregator acts as an energy service provider between the utility and the consumers, and facilitate the consumers to actively participate in demand side management by introducing the new concept of demand reduction bidding (DRB) under constrained direct load control. Paper also presented an algorithm for the proposed framework and demonstrated the efficacy of the algorithm by considering few case studies and concluded with simulation results and discussions.

건물군 에너지 수요관리 알고리즘 및 적용 절차 (Energy Demand Management Algoritm for Buildings and Application Procedure)

  • 김정욱
    • 에너지공학
    • /
    • 제25권2호
    • /
    • pp.79-85
    • /
    • 2016
  • 본 논문은 건물군을 위한 개선된 수요 관리 방안을 연구하였다. 수요 반응 체계하에서 제어가능한 다양한 수요 사이드 자원을 집단화하는 것이 중요하다. 기존의 수요관리 알고리즘은 주로 단일 건물로 제한된데 반하여 본 논문은 많은 수의 건물을 위한 수요관리 알고리즘을 제시하였다. 또한, 제시된 수요관리 알고리즘을 적용하기 위한 절차를 제시하였다.

스마트에너지 방식을 적용한 전력신산업 활성화 모델 사례 연구: ESS, 전기차 충전, 전력수요관리 중심으로 (New Energy Business Revitalization Model with Smart Energy System: Focused on ESS, EV, DR)

  • 신재우
    • 한국IT서비스학회지
    • /
    • 제21권6호
    • /
    • pp.117-125
    • /
    • 2022
  • In respond to climate change caused by global environmental problems, countries around the world are actively promoting the advancement of new electricity industries. The new energy business is being applied to energy storage systems (ESS), electric vehicle charging business, and power demand response using cutting edge technologies. In 2022, the Korean government is also establishing a policy stance to foster new energy industries and making efforts to improve its responsiveness to power demand response with the innovative technologies. In Korea, attempts to commercialize energy power are also being made in the private and public sectors to control energy power in houses, buildings, and industries. For example, private companies, local governments, and central government are making all-out efforts to develop new energy industry models through joint investment. There are forms such as establishing energy-independent facilities by region, establishing an electric vehicle charging system, controlling urban lighting systems with Information technologies, and managing demand between power suppliers and power consumers. This study examined the business model applied with energy storage system, electric vehicle charging business, smart lighting, and power demand response based on information communication technology to examine the site where smart energy system was introduced. According to this study, company missions and government tasks are suggested to apply new energy business technologies as economical energy solutions that meet the purpose of use by region, industry, and company.

행위자기반모형을 이용한 선택적 전력요금제의 전력요금 절감효과 분석 (An Agent-Based Model Analysis on the Effects of Consumers' Demand Response System)

  • 박호정;이유수
    • 자원ㆍ환경경제연구
    • /
    • 제24권1호
    • /
    • pp.225-249
    • /
    • 2015
  • 우리나라 전력시장에서도 보다 선진화된 요금체계가 도입되어야 한다는 관점에서 가정부문에서의 선택적 전력요금제 도입이 논의되고 있다. 본 연구에서는 고정요금제, 실시간 요금제(RTP), 계시별 요금제(TOU)를 도입하였을 때의 효과를 분석하기 위해 행위자기반모형을 구축하였다. 시간대별 전력소비 유형이 다른 행위자를 설정하였으며, 전력수요와 전력가격을 연동시키기 위해 발전부문도 모형에 도입하였다. 분석 결과, 소비자 유형이 피크부하 때 덜 사용하는 경우에는 실시간 요금제인 RTP나 TOU를 택했을 때의 비용절감 효과가 컸으며, 특히 스마트 계량기 등을 이용하여 전력사용 시간을 최적화할 수 있는 경우에는 그 편익이 더욱 증가한 것으로 나타나 향후 스마트 전력소비를 위한 인프라 구축이 필요함을 알 수 있다.

부하차단 메카니즘에 관한 연구 (A Study on Mechanism of Load Shedding)

  • 신호성;문종필;김재철;송경빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.162-164
    • /
    • 2004
  • Electrical power peak demand of Republic of Korea is annually growing and the peak demand has occurred in the summer. It is difficult that we handle with constructing power plants and increasing generation capacity to cope with a suddenly increased demand due to the cost problem, difficulty to find the new plant site, and the spread of the NIMBY. The alternative of the above problem is to efficiently manage demand of electrical power. Accordingly, load shedding of a section of demand side management is investigated. First we surveyed a trend of research in the domestic and overseas, for load curtailment and demand response program. After reviewing several demand response programs, the future research direction for load shedding in emergency and normal operation is introduced.

  • PDF

수요반응 프로그램을 고려시 전력판매사업자의 이익을 최대화하는 최적 인센티브 및 부하 감축량 결정 (A Study on the Determination of the optimal incentives and amount of load reduction for a retailer to maximize profits considering Demand Response Programs)

  • 김동현;곽형근;김진오
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.291-297
    • /
    • 2010
  • A system called demand response programs (DRP) is being introduced among various countries owing to the lack of new generation capacity and the higher fuel generation cost. It is a program which provides for the end-users to select their consumption of electricity by recognizing the value of their consumption in real time. That is, Demand Response can be defined as the changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity or other signals. It is expected that the effects of DRP are preventing price spike, improving supply reliability and social welfare and increasing option of customers. Considering the customer's thermal comfort zone, this paper determines the most profitable combination of optimal incentives and amounts of load reduction for a retailer to maximize profits according to predicted outdoor temperatures while implementing DRP.

지진기록 선택에 따른 요구지진 하중의 변화 (Variability of Seismic Demand According In the Selection the Earthquake Ground Motion Groups)

  • 황수민;한상환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.417-422
    • /
    • 2004
  • It is the challenging task to predict seismic demand for structural design. In current seismic design provisions such as UBC, NEHRP, ATC 3-06, the seismic demand is calculated using the response spectrum with response modification factor (R). This paper investigates variability of seismic demand according to selecting the earthquake ground motion groups. Different Earthquake sets used by Miranda, Riddell and Seed selected were used in this study. Earthquake sets selected by authors include 62 sets of near field ground motion and 19 sets one pulse ground motion. Linear Elastic Response Spectrum (LERS), the variation of performance points of calculated by Capacity Spectrum Method (CSM) were considered with respect to the different sets of earthquake ground motions.

  • PDF

계통보조서비스에서 부하자원의 활용방안에 대한 고찰 (A Study of Demand Response Resource in Ancillary Service)

  • 김성철;유성영;김형준;김형중;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.663-665
    • /
    • 2004
  • There are some demand response program which is Direct Load Control and so on in Korea. These are used to manage lack of power stability or shift peak time for shading load. It is very important not only using stability power system but controling and scheduling power system on the whole. Interruptible loads are essential resources to solve lack of energy and limit of constructing generator On recently days, Demand Response Program's reliability is recognized as ancillary or reserve service in many country. This paper presents a necessity to apply demand resource to our ancillary program. For this reason, it is introduce overseas ancillary program using load resource.

  • PDF

수입자동차 리콜 수요패턴 분석과 ARIMA 수요 예측모형의 적용 (Analysis of the Recall Demand Pattern of Imported Cars and Application of ARIMA Demand Forecasting Model)

  • 정상천;박소현;김승철
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.93-106
    • /
    • 2020
  • This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.