• Title/Summary/Keyword: Demand for Research Information

Search Result 1,699, Processing Time 0.032 seconds

FMEA of Electric Power Management System for Digital Twin Technology Development of Electric Propulsion Vessels (전기추진선박 디지털트윈 기술개발을 위한 전력관리시스템 FMEA)

  • Yoon, Kyoungkuk;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1098-1105
    • /
    • 2021
  • The International Maritime Organization has steadily strengthened environmental regulations on nitrogen oxides and carbon dioxide emitted from marine vessels. Consequently, the demand for electric propulsion vessels based on eco-friendly elements has increased. To this end, research and development has been steadily conducted for various vessels. In electric propulsion systems, a redundancy configuration is typically adopted to increase reliability and facilitate the onboard arrangement. Furthermore, studies have been actively conducted to ensure the safety of electric propulsion systems through the combination with digital twin technology. A digital twin can be used to predict outcomes in advance by implementing real-world equipment or space in a virtual world like twins, integrating real-world information and data with the virtual world, and performing computer simulations of situations that can occur in a real environment. In this study, we perform failure modes and effects analysis (FMEA) to validate the electric power management system (PMS) redundancy scheme for the digital twin technology development of electric propulsion vessels. Then, we propose the role and algorithm of PMS as a compensation function for preventing primary and secondary damages caused by a single equipment failure of the PMS and preventing additional damages by analyzing the impact on the entire system under real vessel operating conditions based on the redundancy FMEA suggested for the ship classification and certification. We verified the improvement in propulsion conservation through tests.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

A Study on Personalized Product Demand Manufactured by Smart Factory (스마트팩토리 환경의 개인맞춤형 제품 구매의도의 영향요인에 관한 연구)

  • Woo, Su-Han;Kwon, Sun-Dong
    • Management & Information Systems Review
    • /
    • v.38 no.1
    • /
    • pp.23-41
    • /
    • 2019
  • Smart Factory is different from existing factory automation in that it aims to produce personalized products with minimum time and cost through ICT. However, previous researches, not from consumers but from product suppliers, have focused on technology trends and technology application methods. In order for Smart Factory to be successful, it must go beyond supplier-focus to meet the needs of consumers. In this study, we surveyed the purchase intention of the personalized product manufactured by smart factory. Influencing factors of purchase intention were drawn as consumers' need for uniqueness, innovativeness, need for touch, and privacy concern, based on previous research. As results of data analysis, it was confirmed that respondents were willing to purchase personalized products, and that consumers' need for uniqueness, innovativeness, and need for touch had a significant impact on purchase intention of personalized products. Our findings can be summarized as follows. First, Consumers' need for uniqueness was found to have positive effects(${\beta}=0.168$) on purchase intention of personalized products. The desire to differentiate themselves from others will be reflected in their personalized products. Therefore, consumers with a higher desire for uniqueness tend to be more willing to purchase personalized products. Second, consumer innovativeness was found to have positive effects(${\beta}=0.233$) on purchase intention of personalized products. Personalized shoes suggested in this study is a new type of personalized product that is manufactured by the latest information and communication technologies such as multi-function robots and 3D printing. Therefore, consumers seeking innovative new experiences are more willing to purchase personalized products. Third, need for touch was found to have positive effects(${\beta}=0.299$) on purchase intention of personalized products. In a smart factory environment, prosuming participation is given to consumers. If consumers participate in the product development process and reflect their requirements on the product, they are expected to increase their purchase intention by virtually satisfying the need for touch. Fourth, privacy concern was found to have no significantly related to purchase intention of personalized products. This is interpreted as a willingness to tolerate the risk of exposing personal information such as home address, telephone number, body size, and preference for consumers who feel highly useful in personalized products.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

A Study on Measures to Strengthen National Authorized Qualification (국가공인 민간자격 활용성 강화 방안 연구)

  • Kim, Sang-Jin;Park, Jong-Sung;Jung, Hyang-Jin
    • Journal of Engineering Education Research
    • /
    • v.12 no.1
    • /
    • pp.3-16
    • /
    • 2009
  • The purpose of this study is to prepare diverse measures to enhance the utilization of national authorized qualification. The detail objectives of this study are first, to re-establish the utilization scope and range of national authorized qualification through analysis of advance research and theory in various fields of learning on the function of qualification; and second, to set the direction to strengthen the utilization of national authorized qualification. Based on discussions on the various fields of learning on the function of qualification, this study divided the utilization scope of qualification into personal utilization for the benefit of the qualification acquirer him or herself and public utilization for the social and economic benefits. And according to this distinction, we prepared measures to strengthen the utilization of national authorized qualification. First of all, as a way to strengthen personal utilization of the national authorized qualification, we prepared measures to enhance accessibility and facilitate further improvement. As a means to enhance accessibility, we proposed restriction on setting the application condition, diversification of qualification authorization method, facilitation of partial qualification system and minimization of expense required to acquire qualification. Also for the further improvement, we proposed creation of job-level centered grade system and development of job-level centered qualification item by stage. For strengthening the public utilization of national authorized qualification, we come up with ways of strengthening flexibility, transparency, public trust and compatibility. As a way to strengthen flexibility, we proposed establishment of qualification demand monitoring system, expansion of direct participation of users on qualification management, establishment of qualification expiration period and its renewal. For the strengthening of transparency, we proposed to build general qualification information system and to utilize qualification recommendation system. To strengthen public trust, we proposed to strengthen the management of qualification management regulation, secure independency, establish internal audit system and strengthen post management of national authorized qualification. And lastly, we suggested that compatibility comparison standard between qualification and qualification level standard be developed for the strengthening of compatibility.

Study on 3D Printer Suitable for Character Merchandise Production Training (캐릭터 상품 제작 교육에 적합한 3D프린터 연구)

  • Kwon, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.455-486
    • /
    • 2015
  • The 3D printing technology, which started from the patent registration in 1986, was a technology that did not attract attention other than from some companies, due to the lack of awareness at the time. However, today, as expiring patents are appearing after the passage of 20 years, the price of 3D printers have decreased to the level of allowing purchase by individuals and the technology is attracting attention from industries, in addition to the general public, such as by naturally accepting 3D and to share 3D data, based on the generalization of online information exchange and improvement of computer performance. The production capability of 3D printers, which is based on digital data enabling digital transmission and revision and supplementation or production manufacturing not requiring molding, may provide a groundbreaking change to the process of manufacturing, and may attain the same effect in the character merchandise sector. Using a 3D printer is becoming a necessity in various figure merchandise productions which are in the forefront of the kidult culture that is recently gaining attention, and when predicting the demand by the industrial sites related to such character merchandise and when considering the more inexpensive price due to the expiration of patents and sharing of technology, expanding opportunities and sectors of employment and cultivating manpower that are able to engage in further creative work seems as a must, by introducing education courses cultivating manpower that can utilize 3D printers at the education field. However, there are limits in the information that can be obtained when seeking to introduce 3D printers in school education. Because the press or information media only mentions general information, such as the growth of the industrial size or prosperous future value of 3D printers, the research level of the academic world also remains at the level of organizing contents in an introductory level, such as by analyzing data on industrial size, analyzing the applicable scope in the industry, or introducing the printing technology. Such lack of information gives rise to problems at the education site. There would be no choice but to incur temporal and opportunity expenses, since the technology would only be able to be used after going through trials and errors, by first introducing the technology without examining the actual information, such as through comparing the strengths and weaknesses. In particular, if an expensive equipment introduced does not suit the features of school education, the loss costs would be significant. This research targeted general users without a technology-related basis, instead of specialists. By comparing the strengths and weaknesses and analyzing the problems and matters requiring notice upon use, pursuant to the representative technologies, instead of merely introducing the 3D printer technology as had been done previously, this research sought to explain the types of features that a 3D printer should have, in particular, when required in education relating to the development of figure merchandise as an optional cultural contents at cartoon-related departments, and sought to provide information that can be of practical help when seeking to provide education using 3D printers in the future. In the main body, the technologies were explained by making a classification based on a new perspective, such as the buttress method, types of materials, two-dimensional printing method, and three-dimensional printing method. The reason for selecting such different classification method was to easily allow mutual comparison of the practical problems upon use. In conclusion, the most suitable 3D printer was selected as the printer in the FDM method, which is comparatively cheap and requires low repair and maintenance cost and low materials expenses, although rather insufficient in the quality of outputs, and a recommendation was made, in addition, to select an entity that is supportive in providing technical support.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

Humidifier disinfectant lung injury, how do we approach the issues?

  • Choi, Jihyun Emma;Hong, Sang-Bum;Do, Kyung-Hyun;Kim, Hwa Jung;Chung, Seockhoon;Lee, Eun;Choi, Jihyun;Hong, Soo-Jong
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.19.1-19.7
    • /
    • 2016
  • A large portion of the Korean population has been exposed to toxic humidifier disinfectants (HDs), and considering that the majority of the victims are infants, the magnitude of the damage is expected to be considerably larger than what has currently been revealed. The current victims are voicing problems caused by various diseases, including but not limited to lung, upper respiratory tract, cardiovascular, kidney, musculoskeletal, eye, and skin diseases, etc. However, there has been difficulty in gaining validation for these health problems and identifying causal relationships due to lack of evidence proving that toxic HD is the specific causes of extrapulmonary diseases such as allergic rhinitis. Furthermore, the victims and bereaved families of the HD case have not received any support for psychological distress such as post-traumatic stress disorder, depression, feelings of injustice, and anger caused by the trauma. In addition, because the underlying mechanisms of the toxic materials within the HDs such as polyhexamethylene guanidine phosphate, poly(oxyalkylene guanidine) hydrochloride, chloromethylisothiazolinone /methylisothiazolinone have yet to be determined, the demand for information regarding the HD issue is growing. The victims of the HD cases require support that goes beyond financial aid for medical costs and living expenses. There is a desperate need for government-led integrated support centers that provide individualized support through health screenings; in other words, we need an integrated facility that provides the appropriate social support to allow the victims to recover their physical and mental health, so as to well prepare them to return to a normal life. The implementation of such a plan requires not only the close cooperation between those departments already directly involved such as the Ministry of Environment and the Ministry of Health and Welfare, but also active support on a national scale from pan-governmental consultative bodies.

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

The Effect of the Reduction in the Interest Rate Due to COVID-19 on the Transaction Prices and the Rental Prices of the House

  • KIM, Ju-Hwan;LEE, Sang-Ho
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.8
    • /
    • pp.31-38
    • /
    • 2020
  • Purpose: This study uses 'Autoregressive Integrated Moving Average Model' to predict the impact of a sharp drop in the base rate due to COVID-19 at the present time when government policies for stabilizing house prices are in progress. The purpose of this study is to predict implications for the direction of the government's house policy by predicting changes in house transaction prices and house rental prices after a sharp cut in the base rate. Research design, data, and methodology: The ARIMA intervention model can build a model without additional information with just one time series. Therefore, it is a time-series analysis method frequently used for short-term prediction. After the subprime mortgage, which had shocked since the global financial crisis in April 2007, the bank's interest rate in 2020 is set at a time point close to zero at 0.75%. After that, the model was estimated using the interest rate fluctuations for the Bank of Korea base interest rate, the house transaction price index, and the house rental price index as event variables. Results: In predicting the change in house transaction price due to interest rate intervention, the house transaction price index due to the fall in interest rates was predicted to change after 3 months. As a result, it was 102.47 in April 2020, 102.87 in May 2020, and 103.21 in June 2020. It was expected to rise in the short term. In forecasting the change in house rental price due to interest rate intervention, the house rental price index due to the drop in interest rate was predicted to change after 3 months. As a result, it was 97.76 in April 2020, 97.85 in May 2020, and 97.97 in June 2020. It was expected to rise in the short term. Conclusions: If low interest rates continue to stimulate the contracted economy caused by COVID-19, it seems that there is ample room for house transaction and rental prices to rise amid low growth. Therefore, In order to stabilize the house price due to the low interest rate situation, it is considered that additional measures are needed to suppress speculative demand.