• Title/Summary/Keyword: Delta-1

Search Result 5,377, Processing Time 0.03 seconds

A Study on the Hull-dimension of 89 ton class Stow-net Vessel with Stern-fishing (89톤급 선미식 안강망어선의 선형치수에 관한 연구)

  • Park, Je-Ung;Lee, Hyeon-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.159-165
    • /
    • 1997
  • This paper presents the optimum dimension of 89 ton class stow-net vessel with stern-fishing. The model of basic design is developed by using the optimization techniques referring to objective function and numerous constraints as follows; speed, fishing quantity, fishing days, catch per unit effort(CPUE), and weight/ratio of main dimensions, etc. Thus, the basic design of stow-net fishing vessel is built up by using the optimization of the design variables called the economic optimization criteria, and the objective function represents the criterion which is cost benefit ratio(CBR). The main conclusions are as follows. 1. S/W for decision of optimum hull size is developed in 89 ton class stow-net fishing vessel which is constructed with optimization of the design variables called the economic optimization criteria. 2. For optimum ship dimensions in 89 ton class stow-net fishing vessel, the hull dimensions can be obtained in the range of L= 27.3m, B = 6.6m, D = 2.80m, Cb = 0.695, T/D = 0.80, $\Delta$(displacement)=281.7ton with 10 knots.

  • PDF

Physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 (분무건조공정을 이용한 유산균포집 미분의 제조 및 물리화학적 특성)

  • Park, Hye-Mi;Lee, Dae-Hoon;Jeong, Yoo-Seok;Jung, Hee-Kyoung;Cho, Jae-Gon;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.3
    • /
    • pp.392-398
    • /
    • 2015
  • The physicochemical properties of spray-dried rice flour with Lactobacillus plantarum CGKW3 were investigated. Amylose and damaged starch contents of spray-dried rice flour (S10, S20, S30, and S50) with L. plantarum CGKW3 were 14.18~17.75% and 24.65~34.08%, respectively. The particle size of spray-dried rice flour was $82.28{\sim}131.17{\mu}m$. The rice flour with L. plantarum CGKW3 showed a good powder flowability. The water absorption and water solubility of spray-dried rice flour were 1.96~2.13 and 9.91~21.95%, respectively. Thermal properties measured by differential scanning calorimeter revealed that the enthalpy (${\Delta}H$) for starch gelatinization were highest in the rice flour (S50) with L. plantarum CGKW3. When compared, the viable cell number of spray-dried rice flour were found to be in the following order: S10 (5.78 log CFU/g) < S20 (6.38 log CFU/g) < S30 (6.69 log CFU/g) < S50 (7.11 log CFU/g). The survaival rate of L. plantarum CGKW3 was 60.02-73.85%, which reflected the improvement in the quality of rice flour with an increase in treatment concentration. Based on our results, spray-dried rice flour with L. plantarum CGKW3 could be used in various types of rice foods.

Pro-apoptotic Effects of Platycodin D Isolated from Platycodon grandiflorum in Human Leukemia Cells (도라지 유래 사포닌 platycodin D에 의한 인체 백혈병세포의 apoptosis 유도)

  • Park, Sang Eun;Lee, Su Young;Shin, Dong Yeok;Jeong, Jin-Woo;Jin, Myung Ho;Park, Seon Young;Chung, Yoon Ho;Hwang, Hye Jin;Hong, Sang Hoon;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.389-398
    • /
    • 2013
  • Platycodin D is a major constituent of triterpene saponins, which is found in the root of Platycodon grandiflorum, Platycodi Radix, which is widely used in traditional Oriental medicine for the treatment of many chronic inflammatory diseases. Several pharmacological effects of this compound have been reported recently, such as anti-inflammation, immunogenicity, anti-adipogenesis, lowered cholesterol, and anti-cancer activity. However, the mechanism by which this action occurs is poorly understood. In this study, we found that platycodin D greatly increased the potential of the anti-proliferative effect in various cancer cell lines. Our data revealed that platycodin D treatment resulted in a time- and concentration-response growth inhibition of U937 cells by inducing apoptosis, as evidenced by the formation of apoptotic bodies, chromatin condensation, and the accumulation of cells in the sub-G1 phase. Apoptosis induction of U937 cells by platycodin D correlated with an increase in the Bax/Bcl-2 ratio and caused the down-regulation of IAP family members. In addition, platycodin D treatment resulted in proteolytic activation of caspase-3, the concomitant degradation of poly(ADP-ribose) polymerases, and the collapse of the mitochondria membrane potential (${\Delta}{\Psi}_m$). However, the cytotoxic effects induced by platycodin D treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrated the important role that caspase-3 played in the observed cytotoxic effect. These findings suggest that platycodin D may be a potential chemotherapeutic agent for use in the control of human leukemia U937 cells. These findings also provided important new insights into possible molecular mechanisms of the anti-cancer activity of platycodin D.

Growth and Water Use Efficiency of Major Tree Species for Rehabilitation and the Impacts of Planting Trees on Microclimate Condition in Central Dry Zone of Myanmar (미얀마 건조지에서 주요 조림 수종의 생장과 수분이용효율 특성 및 조림이 건조지의 미세기상변화에 미치는 영향)

  • Park, Go Eun;Kim, Chan Beom;An, Jiae;Thang, Tluang Hmung;Maung, Wai Phyoe;Wai, Khaing Hsu;Kwon, Jino;Park, Chanwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.327-336
    • /
    • 2016
  • The Bagan, the central part of Myanmar, is dry zone where the mean annual precipitation is less than 600 mm for the last ten years. Forest in this region has been degraded due to biotic and abiotic disturbances. While there have been various efforts to rehabilitate the degraded area, the information on growth and physiological characteristics of planting species and the impacts of planting trees in the region still lacks. Therefore, this study was conducted to determine the growth and physiological water use efficiency characteristics of five species (Azadirachta indica A. Juss., Acacia catechu Willd., Eucalyptus camaldulensis Dehn., Acacia leucophloea (Roxb.) Willd. and Albizia lebbek (L.) Willd.) which are utilized as rehabilitation species in the dry zone and to identify the impacts of tree planting on microclimate change in dry zone. The growth and the foliar carbon isotope composition of seedlings and the above mentioned five species planted in 2005 were measured. And from February 2015 to January 2016, microclimatic factors air temperature and relative humidity at 60 cm and 2 m above soil, soil temperature, soil water contents and precipitation were measured at every 30-minute interval from the two weather stations installed in the plantation located in Ngalinpoke Mt. Range. One was established in the center of A. indica plantation, and the other was in the barren land fully exposed to the sunlight. Among the five species, A. indica and A. lebbek which showed higher water use efficiency could be recommended as rehabilitation species in dry zone. Planting trees in the dry area was shown to affect the change of microclimate with shading effects, declining temperature of the land surface and aridity of the air, and to contribute to conserving more water in soil by preventing direct evaporation and containing more water with fine roots of trees.

A Novel Glycine-Rich Region in Sox4 is a Target for the Proteolytic Cleavage in E. coli (전사활성 인자인 Sox4의 단백질 분해효소에 의한 표적 부위에 관한 연구)

  • 허은혜;최주연;장경희;김인경;임향숙
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • Sox4, a transcription factor, consists of three functional domains: an HMG-box domain as a DNA binding domain, serine rich region as a transactivation domain and glycine rich region (GRR), an unknown functional domain. Although Sox4 is known to be functionally involved in heart, B-cell and reproductive system development, its physiological function remains to be elucidated. We used pGEX expression system to develop a simple and rapid method for purifying Sox4 protein in suitable forms for biochemical studies of their functions. Unexpectedly, we observed that full-length Sox4 appears to be protease-sensitive during expression and purification in E. coli. To map the protease-sensitive site in Sox4, we generated various constructs with each of functional domains of Sox4 and purified as the GST-Sox4 fusion proteins using glutathione beads. We found that the specific cleavage site for the proteolytic enzyme, which exists in E. coli, is localized within the novel GRR of Sox4. Our study suggest that the GRR of Sox4 may a target for the cellular protease action and this cleavage in the GRR may be involved in regulating physiological function of Sox4. Additionally, our study may provide a useful method for investigating the proteolytic cleavage of the target molecule in E. coli.

Decreased Nocturnal Blood Pressure Dipping in Patients with Periodic Limb Movements in Sleep (수면중 주기성 사지 운동에서 나타나는 야간 혈압 강하의 감소)

  • Lee, Mi Hyun;Choi, Jae-Won;Oh, Seong Min;Lee, Yu Jin
    • Sleep Medicine and Psychophysiology
    • /
    • v.25 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • Objectives: Previous studies have shown that periodic limb movements in sleep (PLMS) could be one of risk factors for cardiovascular morbidity. The purpose of this study was to investigate the association between PLMS and blood pressure changes during sleep. Methods: We analyzed data from 358 adults (176 men and 182 women) aged 18 years and older who were free from sleep apnea syndrome (Respiratory Disturbance Index < 5) and sleep disorders such as REM sleep behavior disorder or narcolepsy. Demographic characteristics, polysomnography records, and clinical variable data including blood pressure, body mass index, alcohol, smoking, and current medications were collected. In addition, self-report questionnaires including the Beck Depression Index, Epworth Sleepiness Scale and Pittsburgh Sleep Quality Index were completed. Blood pressure change from bedtime to awakening was compared between the two periodic limb movement index (PLMI) groups [low PLMI ($PLMI{\leq}15$) and high PLMI (PLMI > 15)]. Blood pressure change patterns were compared using repeated measures analysis of variance. Results: Systolic blood pressure in the high PLMI group was lower than that in the low PLMI group (p = 0.036). These results were also significant when adjusted for gender and age, but were not statistically significant when adjusted for BMI, alcohol, smoking, anti-hypertension medication use and sleep efficiency (p = 0.098). Systolic blood pressure dropped by 9.7 mm Hg in the low PLMI group, and systolic blood pressure in the high PLMI group dropped by 2.9 mm Hg. There was a significant difference in delta systolic blood pressure after sleep between the two groups in women when adjusted for age, BMI, alcohol, smoking, antihypertensive medication use and sleep efficiency (p = 0.023). Conclusion: PLMS was significantly associated with a decreasing pattern in nocturnal BP during sleep, and this association remained significant in women when adjusted for age, BMI, alcohol, smoking, antihypertension medication use and sleep efficiency related to blood pressure. We suggest that PLMS may be associated with cardiovascular morbidity.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF