• Title/Summary/Keyword: Delignification

Search Result 93, Processing Time 0.026 seconds

Chlorte Reduction in $ClO_2$Prebleaching by the Addition of HClO Scavengers

  • Yoon, Byung-Ho;Lee, Myoung-Ku;Wang, Li-Jun
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.11a
    • /
    • pp.15-21
    • /
    • 2000
  • In chlorine dioxide delignification and bleaching the formation of chlorate is undesirable because it does not react with lignin and is harmful to the environment. Chlorate is mainly formed from the in-situ generated hypochlorus acid which is also the main reason for AOX formation. In previous literature scavengers of hypochlorous acid such as sulfamic aicd, DMSO, and hydrogen peroxide have been added to bleaching stages to reduce AOX formation but less attention has been paid to chlorate reduction. This paper thus focuses on the reduction of chlorate content caused by the following additives, sulfamic acid, DMSO, hydrogen peroxide, and oxalic acid. The results show that only sulfamic acid and DMSO reduce chlorate formation under our chlorine dioxide prebleaching conditions. Results by UV spectroscopy and pH adjustment show that scavengers react with hypochlorous acid much faster than with chlorine. Hydrogen peroxide and oxalic acid react with HClO/$Cl_2$much slower than DMSO and sulfamic acid do. The reason for the ineffectiveness of hydrogen peroxide and oxalic acid is ascribed to their slow reaction rates with HClO compared to that of chlorate formation. The fact that only 30-35% of the chlorate can be reduced by sulfamic acid and DMSO when charged in same mole ratio to chlorine dioxide, suggested that the reaction rate of DMSO and sulfamic acid with hypochlorous aicd are of the same magnitude as that of chlorate formation.

  • PDF

Separation and Utilization of Main Components of Hardwood by Organosolv Pupling (Organosolv 방법(方法)에 의(依)한 활엽수(闊葉樹) 주요(主要) 조성분(組成分)의 분리(分離) 및 이용(利用))

  • Paik, Ki-Hyon;An, Byoung-Jun;Nahm, Won-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.70-78
    • /
    • 1988
  • To separate and utilize the main components of hardwood (Quercus mongolica) by organosov pulping (ester pulping), chips were cooked at various conditions such as; the solvent ratio (acetic acid: ethylacetate: water, 50:25:25; 33:33:34; 25:50:25), maximum temperature (165, 170, $175^{\circ}C$), and cooking times (2, 2.5, 3 hr). The pulps were bleached by the sequences of CEDED, C/DEDED, PEDED. Lignin, sugars, and acetic acid were separated from black liquor and washing liquors. 1. The selective delignification at optimal pulp yield (43-45%) was obtained by cooking at acetic acid: ethylace tate: water ratio of 33:34:34 for 3 hr at $170^{\circ}C$. But in this case, kappa no. of the pulp was not reduced under 60 points. 2. Kappa no. of the pulp could be dropped by an acetone wash to remove reprecipitated lignin a t cooked pulp. 3. The unbleached pulps had a brightness of 45-50%, whereas the bleached pulps gave at 88-93% brightness. Tensile, burst, and tear strengths of the bleached pulps were lower than those of kraft pulp, especially in tear strength. The pulps which were bleached with CEDED sequence were higher in strengths than another bleaching sequences. 4. Lignin of 90-95%(lignin base on wood)was separated from black liquor and washing liquors, while the purified sugars and recovery of acetic acid were a low. An organic phase composed of acetic acid, ethylacetate, and water was separated to a two-phase system by proper adjustment of the solvent ratios.

  • PDF

Correlating the Fineness and Residual Gum Content of Degummed Hemp Fibres

  • Beltran, Rafael;Hurren, Christopher J.;Kaynak, Akif;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.129-133
    • /
    • 2002
  • It is well known residual gum exists in degummed or rotted hemp fibers. Gum removal results in improvement in fiber fineness and the properties of the resultant hemp yams. However, it is not known what correlation if any exists between the residual gum content in retted hemp fibers and the fiber fineness, described in terms of fiber width in this paper. This study examined the mean width and coefficient of variation (CV) of fiber width of seventeen chemically rotted hemp samples with reference to residual gum content. The mean and CV of fiber width were obtained from an Optical fiber diameter analyser (OFDA 100). The linear regression analysis results show that the mean fiber width is directly proportional to the residual gum content. A slightly weaker linear correlation also exists between the coefficient of variation of fiber width and the residual gum content. The strong linear co-relation between the mean of fiber width and the residual gum content is a significant outcome, since testing for fiber width using the OFDA is a much simpler and quicker process than testing the residual gum content. Scanning Electron Microscopy (SEM) reinforces the OFDA findings. SEM micrographs show a flat ribbon like fiber cross-section hence the term \"fiber width\" is used instead of fiber diameter. Spectral differences in the untreated dry decorticated skin samples and chemically treated and subsequently carded samples indicate delignification. The peaks at $1370cm^{-1}$, $1325cm^{-1}$, $1733cm^{-1}$, and $1600cm^{-1}$ attributed to lignin in the untreated samples are missing from the spectra of the treated samples. The spectra of the treated samples are more amine-dominated with some of the OH character lost.cter lost.

Pretreatment of Helianthus tuberosus Residue by Two-Stage Flow Through Process (2단 흐름형 침출공정에 의한 돼지감자 줄기의 전처리)

  • Park, Yong Cheol;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.417-424
    • /
    • 2015
  • In this study, the pretreatment of Helianthus tuberosus residue had been performed. The two-stage pretreatment on flow-through process were applied in the interests of increase of sugar production yield on enzymatic saccharification. The delignification by aqueous ammonia and the fractionation of hemicellulose by sulfuric acid solution as pretreatment solution were confirmed for effects of enzymatic saccharification. Two-stage pretreatment process was performed using aqueous ammonia and sulfuric acid. The first step was performed with aqueous ammonia for 40 min at $163.2^{\circ}C$ and the second step was performed with sulfuric acid solution for 20 min at $169.7^{\circ}C$. And then, the first step was performed with sulfuric acid solution and the second step was pretreated with aqueous ammonia. At this time, the glucose production was 30.7 g and the glucose yield was 72.4% in the first step process with aqueous ammonia. And, the glucose production was 20.9 g and the glucose yield was 49.3% in the first step process with sulfuric acid solution.

Effect of Biological and Liquid Hot Water Pretreatments on Ethanol Yield from Mengkuang (Pandanus artocarpus Griff)

  • Yanti, Hikma;Syafii, Wasrin;Wistara, Nyoman J;Febrianto, Fauzi;Kim, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.145-162
    • /
    • 2019
  • This study aimed to increase the sugar and ethanol yield from the mengkuang plant biomass through biological and liquid hot water (LHW) pretreatment and their combination. The results showed that biological pretreatments with 5% inoculum of the fungus Trametes versicolor resulted in the highest alpha cellulose content incubated for 30 days, and 10% inoculum resulted in the lowest lignin content. LHW pretreatment decreased the hemicellulose content of pulps from 10.17% to 9.99%. T. versicolor altered the structure of the mengkuang pulp by degrading the lignin and lignocellulose matrix. The resulting delignification and cellulose degradation facilitate the hydrolysis of cellulose into sugars. The alpha cellulose content after biological-LHW pretreatment was higher (78.99%) compared to LHW-biological pretreatment (76.85%). Scanning electron microscopy analysis showed that biological-LHW combinated treatment degrades the cell wall structures. The ethanol yield for biological-LHW pretreated sample was observed 43.86% (13.11 g/L ethanol by weight of the substrate, which is much higher than that of LHW-biological pretreatment (34.02%; 9.097 g/L). The highest reducing sugar content about 45.10% was observed with a resulting ethanol content of 15.5 g/L at LHW pretreatment temperature of $180^{\circ}C$ for 30 min.

Studies on the Hydrolysis of Holocellulose with Trichoderma viride Cellulase - (I) Effect of the treated substrate - (Cellulase에 의(依)한 목재당화(木材糖化)에 관(關)한 연구(硏究) - (I) 기질(基質) 처리(處理)의 효과(効果) -)

  • Cheong, Tae-Seong;Min, Du-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.38 no.1
    • /
    • pp.13-18
    • /
    • 1978
  • In this study, enzymatic hydrolysis of the holocellulose from Alnus hirsuta (Spach) Rupr. (8-14 yr's) was investigated using crude cellulase preparations of Trichoderma viride Pers. ex. Fr. SANK 16374. And conducted on the optimum condition of the treated substrate for saccharification. A strain of Trichoderma viride Pers. ex. Fr. SANK 16374 was found to be highly efficient for the cellulase productivity, especially in the submerged culture process. The culture medium used in this experiment was prepared from an extract of wheat bran consisting also of $KH_2PO_410$, $(NH_4)_2$ $SO_4$ 3, $NaNO_3$ 3, and $MgSO_4$ $7H_2O$ 0.5g/l. Cellulose powder (Toyo filter paper, 60 mesh) was found to be an importent factar for inducing the cellulase formation. And the cellulase produced in the culture fluid was salted out quantitatively by the use of ammonium sulfate (Fig. 1) Reducing sugar was determined by the Dinitrosalicylic acid (DNS) method, using reagents prepared according to the method of Sumner (1925). The results obtained were summerized as follows; 1. The method of delignification were treated by the Peracetic acid (PA) method, according to the method of Toyama (1970). The yield of holocellulose were decreased in accordance with increasing concentration of Peracetic acid solution; delignification of Alnus hirsuta Rupr. with 20% Peracetic acid was satisfied for 48 hours and 40%~60% peracetic acid was satisfied for 24 hrs: 2. The substrate (holocellulose) was changed easely into fine powder with enzymatic hydrolysis and cellulase exhibits optimum activity on the reducing sugar formation from substrate at the range of 60-100 mesh. 3. The reducing sugar formation increased in accordance with increasing dry temperature on holocellulose substrate was found to be $190{\pm}5^{\circ}C$. 4. The optimal heat treated time of holocellulose substrate was found to be 45 min. for the reducing sugar formation showed the best products. The reducing sugar formation did not show statisticaly significent diflerences at 5% levels by heat treated time for 45 min. and 60 min.

  • PDF

Microbial Conversion of Woody Waste into Sugars and Feedstuff (II) - Production of Cellulolytic Enzymes from Aspergillus fumigatus and Saccharification of Popla Wood (미생물(微生物)에 의한 목질자원(木質資源)의 당화(糖化) 및 사료화(飼料化)에 관(關)한 연구(硏究) (II) - Aspergillus fumigatus KC-1으로부터 섬유소 분해 효소의 생산 및 현사시나무의 효소가수분해)

  • Chung, Ki-Chul;Huh, Jeong-Weon;Myung, Kyu-Ho;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 1987
  • The cellulolytic activities of Aspergillus fumigatus KC-1 was investigated, which showed the most active producer of cellulase among the 256 strains of cellulose-decomposing microorganisms screened in our laboratory. All the examined cellulolytic activities (filter paper-, Avicel-, cotton-, CMC-, salicin- and xylansaccharifying activity) in a culture of A. fumigatus KC-1 grown on 1% popular sawdust pretreated with peroxide alkaline reached a maximum within 4-5 days. The optimum pH and temperature for the enzymatic activity was found to be pH 4.5 and $60^{\circ}C$ respectively. The sawdust of poplar wood delignified with 1% NaOH and 20% peracetic acid succesively recorded the highest hydrolysis rate in the tests of enzymatic saccharification. The major end product of hydrolysis of poplar wood with the cellulolytic enzymes obtained from A. fumigatus KC-1 was glucose with small amount of cellobiose and xylose. It can be concluded from these results that A. fumigatus KC-1 is an advantagous source of a cellulase that is capable of hydrolyzing cellulose to glucose rapidly. The influence of degree of delignification, substrate size and its concentration on the rate of hydrolysis of poplar wood was also discussed.

  • PDF

Studies on the Hydrolysis of Holocellulose with Trichoderma viride Cellulase - (II) Effects of the Reaction Conditions - (Cellulase에 의(依)한 목재당화(木材糖化)에 관(關)한 연구(硏究) - (II) 반응조건(反應條件)의 효과(効果) -)

  • Min, Du Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.39 no.1
    • /
    • pp.57-63
    • /
    • 1978
  • Enzymatic hydrolysis of the substrate from Alnus hirsuta (Spach) Rupr (8-14years) was investigated using cellulase preparations of Trichoderma viride Pers. ex. Fr. SANK 16374 and conduced on the optimum reaction conditions of the cellulase on saccharification. The crude cellulase was produced by the submerged culture process and produced in the culture fluid was salted out quantitatively by the use of ammonium sulfate. The method of delignification from wood(Saw dust) was treated by the peracetic acid (PA) method. Reducing sugar was determined by the dinitrosalicylic acid (DNS) method. The results were summerized as follows; 1. The optimum pH of cellulase was 5.0 and the range of stability with respect to pH was generally from 4.0 to 6.0 2. The optimum temperature of cellulase was generally $40^{\circ}C$, but reducing sugar formation did not show significent differences at 5% levels in the reaction temperature from $40^{\circ}C$ to $50^{\circ}C$. 3. The redusing sugar were increased with increase of cellulase concentration. 4. The reducing sugar were decreased with increase of substrate concentration. 5. Fructose was a very good inhibitor of the enzyme from Trichoderma viride, but glucose inhibition was generally weak.

  • PDF

Studies on Pulping of Sponge Gourd Net Fiber - Analysis of Morphology and Characteristics of Pulps - (수세미외 섬유의 펄프화에 관한 연구-섬유의 구조와 펄프화별 특징 분석-)

  • Kim, Jong-Gyu;Rho, Jae-Seong;Lee, Jong-Shin
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1014-1021
    • /
    • 1997
  • Studies were carried out on the preparation of several kinds of pulps from Sponge gourd fiber by KP, ASP, SP PAP, AP and addition of AQ pulping process. These unbeaten and beaten pulping fibers were observed their characteristics and fiber structure by SEM, FQA, Image analyzer and Micro projector. The results were summarized as follows; 1) The cooking condition which is the possible defibrilation of Shives are KP base($160^{\circ}C$, 2hr.), ASP base($155^{\circ}C$, 4hr.), PAP base($160^{\circ}C$, 1hr.). From the results, the kappa no. had the range of 12, 25, 10 each other. 2) The pulp yields of sponge gourd fiber obtained the range of KP 50~55%, ASP&60~70% and PAP 45~50%. SP base have the highest and contnets of KP&PAP base are much the same as woods. 3) Increasing amount of NaOH on Pulping was accelerated the defibrilation of Shives and was changed a morphology of pulping fiber quality such as fiber length, curl and kink index. 4) Addition of AQ on pulping process of sponge gourd fiber had a affect to raise the rate of delignification while protecting cellullosic components against degradation, especially defibrilation was very excellent, beated pulp much more easily and increased the fibrilation. 5) ASP system have higher bulk density, fiber bonding and protecting cellullosic components against degradation than KP or PAP. 6) The color reactions of the "C" stain solution showed blue or blue-gray with clean and transparency thin cell wall.

  • PDF

Preparation of Insoluble Dietary Fiber from Forest Waste and Its Physiological Function in Rat Fed High Cholesterol Diets

  • Chai, Young-Mi;Lim, Bu-Kug;Lee, Jong-Yoon;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.78-87
    • /
    • 2002
  • This study investigated the production of insoluble dietary fiber using forest waste and the dietary effect of manufactured insoluble fiber on physiological function in rat fed high cholesterol duets. Insoluble dietary fiber was prepared from the wood chips of oak (Quercus mongolica). The best condition for steam-explosion treatment for the preparation of insonuble dietary fiber was 25 kg/cm$^3$pressure for 6 minutes. In the chemical analysis of insoluble dietary fiber pretreated by 1% sodium hydroxide solution with steam-exploded wood, $\alpha$-cellulose content was 61.7% in the insoluble dietary fiber which contained 7.6% residual lignin. In order to compare insoluble dietary fiber with commercial $\alpha$-cellulose of physiological function, Sprague-Dawley male rats weighing 100$\pm$10 g were randomly assigned to one normal diet and five high cholesterol diet containing 1% cholesterol. The high cholesterol diet groups were classified as fiber free diet (FF group), 5% commercial $\alpha$-cellulose diet (5C group), 10% commercial $\alpha$-cellulose (l0C group), 5% insoluble dietary fiber dict (5M group), and 10% insoluble dietary fiber (10M group). The rats were fed ad libidum for 4 weeks. Food intake, weights gain, and food efficiency ratio in high cholesterol groups were higher than those of normal group, but there were no significant differences between the experimental groups. There were not any significant differences in the weights of livers, kidneys and small intestine of insoluble dietary fiber supplemented groups, but weight of cecum in all insolube dietary fiber group were significantly higher than those of FF group. A gstrointestinal transit time was decreased by supplementation of insoluble dietary fiber. Weight and water contents of feces in the insoluble dietary fiber supplemented groups were significantly higher than those of the FF group. There were not any significant differences in the activities of the glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) between the experimental groups. In conclusion, the manufactured insoluble dietary fiber and commercial insoluble fiber have the same physiological effects. The preparation method of the insoluble dietary fiber from the oak chips suited its purpose.