• Title/Summary/Keyword: Delay fairness

Search Result 156, Processing Time 0.035 seconds

Delayed CTS Transmission Scheme for Fairness Enhancement in UWASNs (수중 센서네트워크에서 공평성을 위한 CTS 전송 지연 기법)

  • Lee, Dong-Won;Kim, Sun-Myeng;Yang, Yeon-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • Underwater sensor networks (UWSNs) employ acoustic channels for communications. One of the main characteristics of the underwater acoustic channel is long propagation delay. Previously proposed MAC (medium access control) protocols for wireless sensor networks cannot be directly used in UWSNs due to the long propagation delay. The long propagation delay and uneven nodes deployments cause spatial fairness in UWSNs. Therefore, a new MAC protocol for UWSNs needs to be developed to provide efficient communications. In this paper, we propose an efficient MAC protocol in order to alleviate the fairness problem. In the proposed scheme, when a node receives a RTS packet, it does not immediately send back but delays a CTS packet. The node collects several RTS packets from source nodes during the delay time. It chooses one of the RTS packets based on the queue status information. And then, it sends a CTS packet to the source node which sent the chosen RTS packet. The performance of the proposed scheme is investigated via simulation. Simulation results show that our scheme is effective and alleviates the fairness problem.

Extended Proportional Fair Scheduling for Statistical QoS Guarantee in Wireless Networks

  • Lee, Neung-Hyung;Choi, Jin-Ghoo;Bahk, Sae-Woong
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.346-357
    • /
    • 2010
  • Opportunistic scheduling provides the capability of resource management in wireless networks by taking advantage of multiuser diversity and by allowing delay variation in delivering data packets. It generally aims to maximize system throughput or guarantee fairness and quality of service (QoS) requirements. In this paper, we develop an extended proportional fair (PF) scheduling policy that can statistically guarantee three kinds of QoS. The scheduling policy is derived by solving the optimization problems in an ideal system according to QoS constraints. We prove that the practical version of the scheduling policy is optimal in opportunistic scheduling systems. As each scheduling policy has some parameters, we also consider practical parameter adaptation algorithms that require low implementation complexity and show their convergences mathematically. Through simulations, we confirm that our proposed schedulers show good fairness performance in addition to guaranteeing each user's QoS requirements.

A Study of Cell delay for ABR service in ATM network (ATM 네트워크에서 ABR 서비스의 셀 지연 방식에 관한 연구)

  • 이상훈;조미령;김봉수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1163-1174
    • /
    • 2001
  • A general goal of the ATM(Asynchronous Transfer Mode) network is to support connections across various networks. ABR service using EPRCA(Enhanced Proportional Rate Control Algorithm) switch controls traffics in ATM network. EPRCA switch, traffic control method uses variation of the ACR(Allowed Cell Rate) to enhance the utilization of the link bandwidth. However, in ABR(Available Bit Rate) service, different treatments are offered according to different RTTs(Round Trip Times) of connections. To improve the above unfairness, this paper presents ABR DELAY mechanism, in which three reference parameters for cell delay are defined, and reflect on the messages of RM(Resource Management) cells. To evaluate our mechanism, we compare the fairness among TCP connections between ABR DELAY mechanism and ABR RRM mechanism. And also we execute simulations on a simple ATM network model where six TCP connections and a background traffic with different RTTs share the bandwidth of a bottleneck link. The simulation results, based on TCP goodput and efficiency, clearly show that ABR DELAY mechanism improves the fairness among TCP connections.

  • PDF

Fairness-insured Aggressive Sub-channel Allocation and Efficient Power Allocation Algorithms to Optimize the Capacity of an IEEE 802.16e OFDMA/TDD Cellular System

  • Ko, Sang-Jun;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.385-398
    • /
    • 2009
  • This paper aims to find a suitable solution to joint allocation of sub-channel and transmit power for multiple users in an IEEE 802.16e OFDMA/TDD cellular system. We propose the FASA (Fairness insured Aggressive Sub-channel Allocation) algorithm, which is a dynamic channel allocation algorithm that considers all of the users' channel state information conditionally in order to maximize throughput while taking into account fairness. A dynamic power allocation algorithm, i.e., an improved CHC algorithm, is also proposed in combination with the FASA algorithm. It collects the extra downlink transmit power and re-allocates it to other potential users. Simulation results show that the joint allocation scheme with the improved CHC power allocation algorithm provides an additional increase of sector throughput while simultaneously enhancing fairness. Four frames of time delay for CQI feedback and scheduling are considered. Furthermore, by addressing the difference between uplink and downlink scheduling in an IEEE 802.16e OFDMA TDD system, we can employ the uplink channel information directly via channel sounding, resulting in more accurate uplink dynamic resource allocation.

Borrowing and Returning Mechanism for Fairness Control of DQOB-SR on Clinet-Server Environments. (클라이언트-서버 환경에서 슬롯 재사용 분산-큐 이중-버스의 공정성 제어를 위한 빌림과 반환 방식)

  • Kim, Jeong-Hong;Kwon, Oh-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.3
    • /
    • pp.435-446
    • /
    • 2001
  • In this paper, a new fairness control method is proposed to distribute DQDB-SR (Distributed-Queue Dual-Bus with Slot Reuse) network bandwidth fairly to all stations on client-server environments. By using an access limit that follows a characteristic of client-sever load patterns and a bandwidth borrowing and returning mechanism, the proposed mechanism imparts fairness bandwidth control capability to DQDB-SR. To implement the proposed mechanism, we find the optimal placement of erasure nodes that maximizes network capacity for DQDB-SR, and calculate the access limit. At overload conditions, simulation results show that the proposed mechanism does not deteriorate network throughput, and outperforms other fairness control mechanisms in a success rate and an average packet transfer delay.

  • PDF

A Network-Aware Congestion Control Scheme for Improving the Performance of C-TCP over HBDP Networks (HBDP 네트워크에서 C-TCP의 성능 향상을 위한 네트워크 적응적 혼잡제어 기법)

  • Oh, Junyeol;Yun, Dooyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1600-1610
    • /
    • 2015
  • While today's networks have been shown to exhibit HBDP (High Bandwidth Delay Product) characteristics, the legacy TCP increases the size of the congestion window slowly and decreases the size of the congestion window drastically such that it is not suitable for HBDP Networks. In order to solve this problem with the legacy TCP, many congestion control TCP mechanisms have been proposed. C-TCP (Compound-TCP) is a hybrid TCP which is a synergy of delay-based and loss-based approaches. C-TCP adapts the decreasing rate of the delay window without considering the congestion level, leading to degradation of performance. In this paper, we propose a new scheme to improve the performance of C-TCP. By controlling the increasing and decreasing rates according to the congestion level of the network, our proposed scheme can improve the bandwidth occupancy and fairness of C-TCP. Through performance evaluation, we show that our proposed scheme offers better performance in HBDP networks as compared to the legacy C-TCP.

Improvement of GPON MAC Protocol for IP TV Service (IPTV 서비스를 위한 GPON 핵심 MAC 기술 개발)

  • Lee, Seung-Kun;Jang, Jong-Wook;Bae, Moon-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.51-54
    • /
    • 2008
  • PON(Passive Optical Network) is the promising technology applicable to TPS(Triple Play Service). To improve process the packet, MAC(Multiple Access Control) is the most important technology in the PON. The core of MAC is DBA(Dynamic Bandwidth Assignment), it classifies SR-DBA(Status Report DBA) and NSR-DBA(Non Status Report DBA). But GPON DBA is using BPON's DBA, so it's bad in network efficiency. This study develop BR(Borrow-Refund)-DBA for improve network efficiency and prompt process. For take the gauge of performance evaluation, estimate about throughput, fairness and queue delay in SR-DBA and NSR-DBA environment

  • PDF

An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System (OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법)

  • Kim Se-Jin;Won Jeong-Jae;Lee Hyong-Woo;Cho Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.451-458
    • /
    • 2006
  • In this paper, we propose a novel scheduling algorithm for downlink transmission which utilizes scarce wireless resource efficiently in an Orthogonal Frequency Division Multiple Access/Time Division Duplex system. Scheduling schemes which exploit channel information between a Base Station and terminals have been proposed recently for improved performance. Time series analysis is used to estimate the channel state of mobile terminals. The predicted information is then used for prioritized scheduling of downlink transmissions for improved throughput, delay and jitter performance. Through simulation, we show that the total throughput and mean delay of the proposed scheduling algorithm are improved compared with those of the Proportional Fairness and Maximum Carrier to Interference Ratio schemes.

Enhanced TFRC for High Quality Video Streaming over High Bandwidth Delay Product Networks

  • Lee, Sunghee;Roh, Hyunsuk;Lee, Hyunwoo;Chung, Kwangsue
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.344-354
    • /
    • 2014
  • Transmission control protocol friendly rate control (TFRC) is designed to mainly provide optimal service for unicast applications, such as multimedia streaming in the best-effort Internet environment. However, high bandwidth networks with large delays present an environment where TFRC may have a problem in utilizing the full bandwidth. TFRC inherits the slow-start mechanism of TCP Reno, but this is a time-consuming process that may require many round-trip-times (RTTs), until an appropriate sending rate is reached. Another disadvantage inherited from TCP Reno is the RTT-unfairness problem, which severely affects the performance of long-RTT flows. In this paper, we suggest enhanced TFRC for high quality video streaming over high bandwidth delay product networks. First, we propose a fast startup scheme that increases the data rate more aggressively than the slow-start, while mitigating the overshooting problem. Second, we propose a bandwidth estimation method to achieve more equitable bandwidth allocations among streaming flows that compete for the same narrow link with different RTTs. Finally, we improve the responsiveness of TFRC in the presence of severe congestion. Simulation results have shown that our proposal can achieve a fast startup and provide fairness with competing flows compared to the original TFRC.

Approximate Analysis of MAC Protocol with Multiple Self-tokens in a Slotted Ring

  • Sakuta, Makoto;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.249-257
    • /
    • 2003
  • Ring networks are very commonly exploited among local area and metropolitan area networks (LAN/MAN), whereas cells or small fixed-size packets are widely used in synchronized ring networks. In this paper, we present an analytical method for evaluating the delay-throughput performance of a MAC protocol with multiple self-tokens in a slotted ring network under uniform traffic. In our analysis, we introduce the stationary probability, which indicates the number of packets in a node. Also, it is assumed that each node has a sufficiently large amount of self-tokens, and a slotted ring has the symmetry. The analytical results with respect to delay-throughput performance have similar values to computer simulated ones. Furthermore, in order to achieve fair access under non-uniform traffic, we propose an adaptive MAC protocol, where the number of self-tokens in a node dynamically varies, based on the number of packets transmitted within a specified period. In the proposed protocol, when the number of packets transmitted by a node within a specified period is larger than a specified threshold, the node decreases the number of self-tokens in a per-node distributed method. That results in creating free slots in the ring, thus all nodes can obtain an equal opportunity to transmit into the ring. Performance results obtained by computer simulation show that our proposed protocol can maintain throughput fairness under non-uniform traffic.