• 제목/요약/키워드: Delay error

검색결과 1,074건 처리시간 0.029초

제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법 (A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay)

  • 이진우
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.426-430
    • /
    • 2006
  • 본 논문에서는 제어 시지연을 갖는 고성능 PI 전류제어기에 대한 새로운 예측전류 적용방법을 모색한다. 먼저 선형 영구자석 동기전동기를 사용한 선형 서보 제어시스템에 존재하는 불가피한 전류예측 오차원인을 분석하고, 전류예측 오차와 제어 시지연을 고려한 전류제어 성능 개선 방법으로 수정된 동기좌표계 비간섭 PI 전류제어기를 제안한다. 그리고 시뮬레이션 및 실험 결과를 통하여 제안된 전류제어기가 서보 제어시스템에 존재하는 전류예측 오차와 제어 시지연이 있는 경우에도 개선된 전류제어응답을 보임을 검증하였다.

멀티미디어 응용을 위한 수송 계층에서의 유연한 오류 제어 모델 (A flexible error control model in transport layer for multimedia application)

  • 박동성;이상헌;고봉홍;이재용;이상배
    • 한국통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.911-925
    • /
    • 1996
  • 미래의 멀티미디어 응용 환경은 각 매체와 응용의 요구 사항들을 효율적으로 충족시킬 수 있는 유연한 오류 제어 모델을 필요로 하고 있으나, 지금까지의 오류 제어는 단일 매체를 처리하기 위한 제한된 유연성만이 제공되어왔다. 이를 해결하기 위하여 본 논문에서는 매체의 신뢰도 기준인 오류 허용률(ETL: Error Tolerance Level)과 응용의 실시간성 기준인 지연(Delay)을 고려하여 수송 계층에서 매체별로 유연하게 오류 제어 방법을 적용하는 모델을 제안한다. 이 모델에서는 매체별로 오류 제어 방법을 선정하기 위하여 오류 혀용률과 등시성과 같은 매체의 속성, 응용의 속성인 지연, 그리고 망에서의 데이터 손실율, 망의 전송 형태, 응용의 연결 모드와 같은 환경 파라미터가 영향 인자로써 고려되었다.

  • PDF

지연시간을 갖는 계통에 대한 강인한 제어기 설계 (Design of Robust Controller for Systems with Time Delay)

  • 박귀태;이기상;김성호
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF

로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구 (Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept)

  • 조건래;장평훈;정제형
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.

관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현 (Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction)

  • 김성덕;김도영;박규태;신기철
    • 융합신호처리학회논문지
    • /
    • 제20권4호
    • /
    • pp.245-251
    • /
    • 2019
  • 소나방위정확도는 소나에서 예측한 표적방위와 실 표적방위와의 일치성을 나타내며 측정을 통해 구해진다. 하지만 소나방위정확도 측정 시에는 복잡하고 다양한 환경 요인이 작용하는 해상에서 이루어지는 관계로 여러 오차가 결과에 포함된다. 특히 GPS 수신장치와 소나센서 위치 차이로 발생하는 관측위치오차와 수중 음파 속도와 공기 중 전자파 속도 사이에서 발생되는 시간지연오차는 정확도에 큰 영향을 미치는 요소이다. 이런 관측위치오차와 시간지연오차를 자동화도구 없이 보정하는 것은 많은 노력이 들어가는 작업이다. 이에 본 연구에서는 관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비를 제안하였다. 실험은 모의데이터와 실 해상데이터를 통해 이루어졌으며, 실험 결과 관측위치오차와 시간지연오차가 시스템적으로 보정되어 모의데이터인 경우 51.7%, 실 해상데이터인 경우 18.5% 이상 보정됨을 확인하였다. 제안한 방법을 통해 향후 소나시스템 탐지성능 검증의 효율성 및 정확성 향상을 기대한다.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권1호
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.

Error Control Policy for Initial Value Problems with Discontinuities and Delays

  • Khader, Abdul Hadi Alim A.
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.665-684
    • /
    • 2008
  • Runge-Kutta-Nystr$\"{o}$m (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance ${\delta}$, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing ${\delta}$, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in ${\delta}$ as ${\delta}{\rightarrow}0$, that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

Location Error Analysis of an Active RFID-Based RTLS in Multipath and AWGN Environments

  • Myong, Seung-Il;Mo, Sang-Hyun;Yang, Hoe-Sung;Cha, Jong-Sub;Lee, Heyung-Sub;Seo, Dong-Sun
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.528-536
    • /
    • 2011
  • In this paper, we analyze the location accuracy of real-time locating systems (RTLSs) in multipath environments in which the RTLSs comply with the ISO/IEC 24730-2 international standard. To analyze the location error of RTLS in multipath environments, we consider a direct path and indirect path, in which time and phase are delayed, and also white Gaussian noise is added. The location error depends strongly on both the noise level and phase difference under a low signal-to-noise ratio (SNR) regime, but only on the noise level under a high SNR regime. The phase difference effect can be minimized by matching it to the time delay difference at a ratio of 180 degrees per 1 chip time delay (Tc). At a relatively high SNR of 10 dB, a location error of less than 3 m is expected at any phase and time delay value of an indirect signal. At a low SNR regime, the location error range increases to 8.1 m at a 0.5 Tc, and to 7.3 m at a 1.5 Tc. However, if the correlation energy is accumulated for an 8-bit period, the location error can be reduced to 3.9 m and 2.5 m, respectively.

측정치 시간지연과 선체의 유연성을 고려한 전달정렬 기법 (A Transfer Alignment Considering Measurement Time-Delay and Ship Body Flexure)

  • 임유철;유준
    • 한국군사과학기술학회지
    • /
    • 제4권1호
    • /
    • pp.225-233
    • /
    • 2001
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. Specifically, to reduce alignment errors induced by measurement time-delay and ship body flexure, an error compensation method is suggested based on delay state augmentation and DCM(Direction Cosine Matrix) partial matching. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then DCM partial matching is properly combined to reduce effects of a ship's Y axis flexure. The simulation results show that the suggested method is effective enough resulting in considerably less azimuth alignment errors.

  • PDF

Cooperation of Time-delay for Internet-based Mobile Robot Using Fuzzy Logic

  • Yoo, Bong-Soo;Lee, Sang-Min;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.179-184
    • /
    • 2002
  • Recently, internet-based applications can be found easily in various felds. Internet-based telerobot system becomes one of important applications of internet. Among many important technological issues on the internet-based telerobot, time-delay is inherently critical problem to be solved. Time-delay is classified as micro time-delay and macro time-delay in this paper. Algorithms for compensation of path-error and time-error are proposed for the both types of time-delays using fuzzy logic since fuzzy logic is one of the best tools to represent expert's knowledge. Simulation results show the validity of the proposed algorithms.